
Electronic Supplementary Material 

Pd nano-catalyst supported on biowaste-derived 

porous nanofibrous carbon microspheres for efficient 

catalysis 
Xianglin Pei1,2*, Siyu Long1,4*, Lingyu Zhang1,2, Zhuoyue Liu1,4, Wei Gong ()1,4, Aiwen 

Lei2, Dongdong Ye ()3 

1 School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 
550025, China 
2 College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China 
3 School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China 
4 Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guizhou Normal 
University, Guiyang 550025, China 

E-mails: gongw@gznu.edu.cn (Gong W); ydd@whu.edu.cn (Ye D) 

 

Experimental section 

Materials 

Chitin was purchased from Zhejiang Golden Shell Biochemical Co., Ltd (Zhejiang, 

China). Palladium acetate (Pd(OAc)2, 99%, Beijing Bailing Wei Technology Co., Ltd), 

commercial 5 wt% Pd/C (Aladdin), nano-Pd powders (Aladdin), Span 85 (Aladdin), 

Tween 85 (Aladdin), and isooctane (AR, Tianjin Damao Chemical Reagent Factory) 

were used as received. All other reagents, such as methanol, acetone, hydrochloric 

acid, etc., are obtained from various commercial resources and can be used without 

further purification. Methylene blue (MB), methyl red (MR), methyl orange (MO), 

rhodamine B (Rh B), congo red (CR), phenol red (PR) (Aladdin), benzaldehyde and 

benzaldehyde derivatives were supplied by Aladdin and could be used without further 

purification.  
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Characterization 

Scanning electron microscopy (SEM) images were observed by field emission 

scanning electron microscopy (FESEM, Zeiss SUPRA 55 Sapphire, Germany) at an 

accelerating voltage of 5 kV. Transmission electron microscopy (TEM) images were 

collected on a JEM-2010 (HT) electron microscope (JEOL, Japan) with an 

accelerating voltage of 200 kV. Before the TEM observation, we first grinded the 

sample thoroughly, then impregnated it with ethanol and dropped the suspension onto 

a copper grid. Infrared spectroscopy was carried out using a Fourier transform 

infrared (FT-IR) spectrometer (model IS5, Japan). Nitrogen physisorption 

measurements were recorded by a Micromeritics AsAp2020 (USA). X-ray 

photoelectron spectroscopy (XPS) was collected on a VG Multi Lab 2000 system with 

a monochromatic A1 Kα X-ray source (Thermo Fisher scientific ESCALAB 250Xi, 

USA). X-ray diffractometer (XRD, S2, Rigaku, Japan). The content of palladium in 

the catalyst was determined by IRISIntrepidII (Thermo) inductively coupled plasma 

atomic emission spectrometry (ICP-OES, Shimadzu). GC yields were recorded with a 

Varian GC 3900 gas chromatography instrument with a FID detector. The degradation 

of dyes was tested by ultraviolet spectrophotometer (UV-2550, Shanghai Yuanxi 

Instrument Co., Ltd.). 

Determination of Pd loading 

The obtained Pd/NCM catalyst (5~10 mg) was stirred in 120 °C nitric acid solution 

(8 mL) for 12 h, and then diluted with deionized water to 100 mL after the supported 

catalyst was soluble. Subsequently, the resulting solution was performed on an 
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ICP-OES (Prodigy 7, Leeman Labs Inc., U. S. A.), and the result showed that the Pd 

loading in Pd/NCM catalyst was 0.64 wt.%. 

 
Figure S1. TG curves of the CM. 

 

 

Figure S2. FT-IR spectra of the CM and NCM. 
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Figure S3. SEM images of the CM (a) and NCM (b). 

 

 

Figure S4. TEM image of the commercial Pd/C (a), and size distribution of the Pd NPs (b). 
 

 
Figure S5. The degradation rate vs. reaction time plots for degradation of MB catalyzed by bare 
NCM in the second and third run. 
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Figure S6. The degradation rate vs. reaction time plots for degradation of MB catalyzed by bare 
chitin (CM) in the first and second run. 
 

 

Figure S7. UV−visible absorption spectra with time for the degradation of PR catalyzed by 
Pd/NCM. 

 
Figure S8. UV−visible absorption spectra with time for the degradation of MR catalyzed by 
Pd/NCM. 
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Figure S9. UV−visible absorption spectra with time for the degradation of MO catalyzed by 
Pd/NCM. 

 
Figure S10. UV−visible absorption spectra with time for the degradation of Rh B catalyzed by 
Pd/NCM. 

 
Figure S11. UV−visible absorption spectra with time for the degradation of CR catalyzed by 
Pd/NCM. 
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Figure S12. The degradation rate vs. reaction time plots for degradation of MB in the presence of 
NaBH4. 

 

Figure S13. The degradation rate vs. reaction time plots for degradation of MB catalyzed by 
Pd/NCM without NaBH4 in the first, second, third run. 

 

 
Figure S14. Cycle activity of Pd/NCM in 5 runs. 
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Figure S15. The mechanism for hydrogenation of aromatic aldehydes by Pd/NCM catalyst. 

 
Table S1. Elemental analysis data of CM and NCM 

Sample C% H% N% O% 

CM 42.77 6.71 6.35 44.17 

NCM 76.75 2.19 5.05 16.01 

 
 

 
Table S2. TOF values of the Pd/NCM catalyst in common 6 dyes. 

Dye MB PR MR MO Rh B CR 
TOF(h-1) 1315.8 1052.6 30303.0 1052.6 869.5 526.3 

 
 
Table S3. Comparison of catalytic activity of dye degradation for Pd/NCM and reported catalysts. 

Catalyst Dye Catalysis condition 
Catalyst  

(mg)  

Dye 
concent
ration 
(ppm) 

Reaction 
time 
(min) 

Degra
dation 

(%) 

Rate 
constant  
(min-1) 

Ref. 

κ-CG-s-Ag 

NPs 
MB RT, NaBH4 - 300.0 3.7 95.0 0.460 [1] 

CoSiOx/PMS MB 25oC, peroxymonosulfate  10 50.0 9.0 ~98.0 0.386 [2] 

SnO2 NPs MB 
RT, 500 W mercury lamp (λ 

~ 365 nm) 
45 10.0 50.0 90.0 0.044 [3] 

SnS2-SiO2@α-

Fe2O3 
MB 

RT, 0.06 W LED light (λ~ 

410 nm) 
40 5.0 100.0 96.0 0.020 [4] 

CdS/Cu7S4-5 MB 30oC, UV light 30 30.0 20.0 98.0 0.168 [5] 

Ge/GeO2 MB RT, In dark - 1.6 60.0 96.0 0.077 [6] 

Au-ZnO MB RT, UV light - 0.03 60.0 98.0 - [7] 

Pd@chitosan MB RT, NaBH4 4 32.0 2.0 100.0 - [8] 

CS-La-GR 

conposite 
MB RT, UV lamp (λ~254 nm) 100 30.0 40.0 93.5 0.052 [9] 
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Au/CeO2-TiO2 MB 30oC, NaBH4 13 15.4 - - 0.334 [11] 

Pd/NCM MB RT, NaBH4 1 31985.0 2.0 100.0 1.395 
This 

work 

κ-CG-s-AgNPs 
Rh 

B 
RT, NaBH4 - 300.0 4.7 93.0 0.380 [1] 

Ag2S-ZnS/cell

ulose 

Rh 

B 

27oC, 500 W tungsten 

halogen bulb 
30 30.0 90.0 98.0 0.006 [10] 

Au/CeO2-TiO2 
Rh 

B 
30oC, NaBH4 - 23.0 10.0 - 0.224 [11] 

ZnIr-MOF-d0.3 
Rh 

B 
RT, visible light 10 50.0 30.0 ~100 - [12] 

Pd/NCM 
Rh 

B 
RT, NaBH4 1 47901.0 3.0 100.0 1.053 

This 

work 

DLP-Au NPs MO RT, NaBH4 - 32.7 8.0 ~100.0 0.102 [13] 

Cu-NMOF/Ce

-doped-Mg-Al

-LDH 

MO RT, NaBH4 0.05 3273.3 1.0 - 1.86 [14] 

Au/CB MO RT, NaBH4 10 160.0 4.0 - 1.29 [15] 

Ag/TP MO RT, NaBH4 10 13.1 10.0 ~100 - [16] 

Pd/NCM MO RT, NaBH4 1 32733.0 2.5 100.0 1.581 
This 

work 

DLP-Au NPs CR RT, NaBH4 - 7.0 10 ~100 0.27 [13] 

Au-ZnO CR RT, NaBH4 0.05 6966.8 1.0 - 2.76 [14] 

Au/CB CR RT, NaBH4 10 160.0 15.0 - 0.365 [15] 

Ag/TP CR RT, NaBH4 10 27.9 12.0 96.9 0.128 [16] 

Pd/NCM CR RT, NaBH4 1 69668.0 5.0 100.0 0.417 
This 

work 

 

Table S4. Hydrogenation of benzaldehyde in various reaction conditionsa 
 

 

Entry Catalyst Solvent 
Temperature 

 (℃) 
Catalyst 
(mol %) 

Yieldb  
(%) 

1 Pd/NCM PhMe 25 0.086 75 
2 Pd/NCM EtOAc 25 0.086 79 
3 Pd/NCM THF 25 0.086 12 
4 Pd/NCM H2O 25 0.086 87 

5 Pd/NCM DMF 25 0.086 Trace 

6 Pd/NCM IPA 25 0.086 54 

7 Pd/NCM MeOH 25 0.086 99 

8 Pd/NCM MeOH 45 0.086 97 

9 Pd/NCM MeOH 60 0.086 82 

10 Pd/NCM MeOH 90 0.086 34 
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11 Pd/NCM MeOH 25 0.017 42 

12 Pd/NCM MeOH 25 0.043 81 

13 Pd/NCM MeOH 25 0.13 96 

14 Pd/C MeOH 25 0.13 37 

15 Nano-Pd MeOH 25 0.13 4 

16 NCM MeOH 25 - 0 
a Reaction conditions: benzaldehyde (0.5 mmol), solvent (5 mL), and 
Pd catalyst (0.086 mol% [Pd], Pd: benzaldehyde), in 1 bar H2 for 4 h. 
b Yields of the products were determined using GC. 

 
Table S5. Comparison of hydrogenation activity of benzaldehyde 

 

Catalyst Conditions 
Catalyst 

(mg) 

[Pd] 

(mol%) 

Time 

(h) 

T  

(oC) 

Yield 

(%) 

TOF  

(h-1) 
Ref. 

GO-Se-Pd 2-Propanol+KOH 10 0.25 3 45 97 129.3 17 

Pd/N400-CNT EtOH ,1 bar H2 94.1 0.35 0.83 45 96 330.5 18 

Pd@HPC-DCD H2O, 0.5 MPa H2 15 0.82 12 80 ~100 10.2 19 

Pd@N-C MeOH, 5 bar H2 50 0.47 1 30 100  215 20 

Pd@TP-POP i-PrOH+KOH 10 - 3 80 98  - 21 

Pd/GNP p-xylene, 2 bar H2 15 0.10 5 50 ~100 250 22 

Pd/AC cyclohexane, 15 bar H2 50-200 - 24 85 15 - 23 

Pd/CNF cyclohexane, 15 bar H2 50-200 - 24 85 16.8 - 23 

Pd/O-CNT EtOH ,1 bar H2 94.1 0.35 0.83 45 27 92.9 18 

Pd/NCM MeOH, 1 bar H2 ~7.2 0.086 4 25 99 287.8 
This 

work 
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