Electronic Supplementary Material

Investigation of the roles of lignin in biomass-based hydrogel for efficient

desalination

Qizhao Shao*, Lan Sun*, Xinzhou Wu, Dafeng Zheng (⊠)

School of Chemistry and Chemical Engineering, Guangdong Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou 510640, China

E-mail: zhengdf@scut.edu.cn

Figures:

Fig. S1 The three structural units of lignin

Fig. S2 DSC curves of wet CLGs and pure water

Fig. S3 Photograph of the evaporator device

Fig. S4 The solar evaporation rate of CLG4 in different concentrations of NaCl solution under 1 sun

Tables:

Table S1 Synthetic formulations and economic cost of CLGs

Table S2 Apparent density and swelling ratio of the CLGs

Table S3 Comparison of evaporation enthalpy results from DSC measurement and dark experiment

Table S4 Concentrations of ions in the artificial seawater via solar evaporation using the CLG4

Fig. S1 The three structural units of lignin

Fig. S2 DSC curves of wet CLGs and pure water

Fig. S3 Photograph of the evaporator device

Fig. S4 The evaporation rate of CLG4 in the NaCl solution of different concentrations under 1 sun

Generales	Materials				Essentia sect/¢	
Samples	HEC/g	AL/g	GO/g	Content of AL/wt%	Economic cost/\$	
CGL1	0.2	0.1	0.02	31	1.616	
CGL2	0.2	0.2	0.02	48	1.616	
CGL3	0.2	0.3	0.02	58	1.616	
CGL4	0.2	0.4	0.02	64	1.616	
CGL5	0.2	0.5	0.02	69	1.616	

 Table S1 Synthetic formulations of CLGs

Table S2 Apparent density and swelling ratio of the CLGs

Samples	CLG1	CLG2	CLG3	CLG4	CLG5
Apparent density/(g·cm ⁻³)	0.0375	0.0497	0.0553	0.0652	0.0686
Swelling ratio/($g \cdot g^{-1}$)	33.1	29.9	27.8	25.2	20.3

Table S3 Comparison of evaporation enthalpy results from DSC measurement and dark experiment

-

-

-

Samples	Pure water	CLG1	CLG2	CLG3	CLG4	CLG5
Enthalpy of evaporation	2337	1748	1715	1718	1803	1836
measured by DSC/($J \cdot g^{-1}$)	2557	1740	1/13	1/10	1805	1050
Enthalpy of evaporation						
measured by dark field	2436	1697	1712	1555	1453	1406
experiments/ $(J \cdot g^{-1})$						

Ions	Initial seawater concentration/(mg \cdot L ⁻¹)	Distilled water concentration/(mg \cdot L ⁻¹)
Na ⁺	10484	15
\mathbf{K}^+	1263	0.6
Ca ²⁺	469	4.8
Mg^{2+}	109	4.0

Table S4 Concentrations of ions in the artificial seawater via solar evaporation using the CLG4