Electronic Supplementary Material

Enhanced permeability and biofouling mitigation of forward osmosis

membranes via grafting graphene quantum dots

Nan Li $(\boxtimes)^2$, Yumeng Zhang¹, Peng Li¹, Bo Zhu¹, Wei Wang¹, Zhiwei Xu $(\boxtimes)^1$

1 State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China

2 State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry,

Tiangong University, Tianjin 300387, China

E-mails: linan@tiangong.edu.cn (Li N); xuzhiwei@tiangong.edu.cn (Xu Z)

Fig. S1. Schematic diagram for synthesis of NH₂-GOQDs.

Fig. S2. Schematic diagram of the formation of the active layer of membrane by IP reaction between MPD and TMC.

Fig. S3. Schematic diagram of the FO membrane operation device.

Fig. S4. High -resolution XPS spectra of (a) N 1s and (b) C 1s of NH₂-GOQDs.

Fig. S5. (a) AFM image of the NH₂-GOQDs, (b) The height of NH₂-GOQDs on the white line.

Fig. S6. XRD pattern of NH₂-GOQDs.

Fig. S7. Fluorescence reaction diagram of (a) TFC membrane (b) TFC-50 (c)TFC-100 (d) TFC-

liquid	$\gamma^{LW}~(mJ/m^2)$	γ^+ (mJ/m ²)	γ^{-} (mJ/m ²)	γ TOT (mJ/m^2)
water	21.8	25.5	25.5	72.8
glycerin	34.0	3.9	57.4	64.0
diiodomethane	50.8	0	0	50.8

 Table S1 Liquid surface energy parameters.

Table S2 XDLVO theoretical parameters[1].

.

parameter	Уо	λ	$\epsilon_0\epsilon_r$	К
value	0.158 nm	0.6 nm	6.95×10 ⁻¹⁰ C ² ·J ⁻¹ ·m ⁻¹	0.104 nm ⁻¹

Table S3 Theoretical parameters, zeta potential, surface tension parameters, and cohesive free energy of foulant.

sample	рН	a _f (nm)	Zeta potential (mV)	γ^{LW} (mJ/m ²)	γ ⁺ (mJ/m ²)	γ^{-} (mJ/m ²)	γ ^{AB} (mJ/m ²)	γ ^{TOT} (mJ/m ²)
E. coli	7.4	660	-3.7	36.3	0.2	64.4	7.2	43.5

Table S4 Contact Angle, zeta potential and surface tension parameters of TFC and TFC-100 membrane.

sample	θ ^w (°)	θ ^G (°)	θ ^D (°)	Zeta potential (mV)	γ^{LW} (mJ/m ²)	γ^+ (mJ/m ²)	γ^{-} (mJ/m ²)	γ^{AB} (mJ/m ²)	γ ^{тот} (mJ/m ²)
TFC	79.1±2.2	63.4±1.8	43.1±1.6	-20	37.97	2.04	0.01	0.34	38.31
TFC-50	33.0±1.1	30±1.4	25.3±1.5	-26	46.79	0.235	5.13	2.2	48.99
TFC-100	27.0±1.2	65.2±1.5	15.6±0.7	-23	48.92	0.13	13.85	2.69	51.62
TFC-150	40.0 ± 1.2	30.2±1.6	20.2 ± 1.4	-22	48.94	0.453	7.30	3.64	52.58

Superscripts W, G, and D represent water, glycerol, and 2 methyl iodide, respectively

sample	foulant	ΔG_{y0}^{LW} (mJ/m ²)	ΔG_{y0}^{AB} (mJ/m ²)	ΔG_{y0}^{EL} (mJ/m ²)	ΔG_{y0}^{TOT} (mJ/m ²)
TFC	E. coli	-2.64	-25.49	-0.13	-28.26
TFC-50	E. coli	-5.89	1.55	-1.802×10 ⁻⁷	-4.34
TFC-100	E. coli	-6.291	8.965	-3.677×10 ⁻⁶	2.674
TFC-150	E. coli	-6.31	4.45	1.299×10 ⁻⁷	-1.86

Table S5 Interaction free energy of the minimum equilibrium distance between TFC, TFC-100membrane and foulant.

Reference

[1] T. Lin, Z. Lu, W. Chen, Interaction mechanisms and predictions on membrane fouling in an ultrafiltration system, using the XDLVO approach, Journal of Membrane Science, 461 (2014) 49-58.