Electronic Supplementary Material

Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH₄ and He/N₂ separation

Ying Li^{1,2*}, Lu Wang^{1*}, Junyan Xie¹, Yong Dai¹, Xuehong Gu¹, Xuerui Wang (⊠)¹
1 State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
2 Quzhou Membrane Material Innovation Institute, Quzhou 324000, China

E-mail: x.wang@njtech.edu.cn

* These authors contributed equally to this work.

The chemical structures of $6FDA-APAF_{0.5}-BIA_{0.5}$ copolyimide were confirmed by ATR-FTIR (Fig. S1). Characteristic imide absorption bands were observed at around 1786 cm⁻¹ (imide carbonyl asymmetric stretching), 1718 cm⁻¹ (imide carbonyl symmetric stretching) [1] and 1253 cm⁻¹ (CF₃ stretching) [2]. The bands at 1370 cm⁻¹ and 723 cm⁻¹ were transverse stretching and out-of-plane bending of C-N-C groups, respectively [3].

Fig. S2 ¹H NMR spectroscopy of 6FDA-APAF_{0.5}-BIA_{0.5} copolyimide.

The presence of APAF was well demonstrated by the chemical shifts at 10.5 ppm, 7.1 ppm, 7.2 ppm, and 7.5 ppm (a, b, c, and d). The copolyimide exhibited an additional signal at 13.3 ppm (e) due to -N-H in the benzimidazole rings. The results were in accord with ¹H NMR spectra of 6FDA-APAF-BIA polymers [1].

Fig. S3 Cross-sectional SEM images of (a) 30 wt.%. Top view of (b) 30 wt.%.

Fig. S4 Cross-sectional SEM image of the whole membrane.

Table S1 Molecular weight data.	
---------------------------------	--

No.	$M_{ m n}$ / 10 ⁴ g mol ⁻¹	$M_{ m w}$ / $10^4~{ m g~mol^{-1}}$	PDI / $M_{\rm w}/M_{\rm n}$
6FDA-APAF-BIA	1.38	2.95	2.14

Density /	FEV /	Thickness /	$P_{ m He}$ /	$P_{\rm He}$ / $q_{\rm He}$ /			
g·cm ⁻³	ΓΓ V / -	μm	Barrer	ине/СН4 / -	Barrer	a _{He/N2} /	
1.584	0.149	60	72	101	74	72	

Table S2 Dense membrane properties.

	Molar volume mL/mol	ρ / g/mL	δ / MPa ^{1/2}	χ parameter with polymer	Miscibility	χ parameter with water
Polymer	N.A.	1.290	21.3	N.A.	N.A.	5.10
NMP	96.60	1.032	22.7	0.08	Yes	0.51
THF	81.90	0.889	19.5	0.11	Yes	1.39
Ethanol	58.39	0.789	26.5	0.63	No	1.05
Water	18.01	1.000	47.8	5.10	No	N.A.

Table S3 Physical properties of polymer, solvents and non-solvents.

Table S4 Linear fitting parameters of and activation energy for He/N_2 and He/CH_4 mixture permeation and single gas permeation in M7 membrane at 0.1 MPa.

	_	Linear fittir	- E _{act} kJ mol ⁻¹	
	Intercept (
U ₂ /N	He	-7.74	-1.00	8.3
He/IN ₂	N_2	-6.15	-1.72	14.3
He/CH ₄	He	-7.61	-0.97	8.1
	CH ₄	-6.03	-1.83	15.2
Single gas	He	-7.91	-0.98	8.1
	N_2	-6.73	-1.84	15.3
	CH ₄	-7.16	-2.10	17.5

	He/CH ₄ system			He/N ₂ system			
Membranes	$P_{ m He}$ /	$S_{ m He/CH4}$	α _{He/CH4}	$P_{ m He}$ /	$S_{\mathrm{He/N2}}$	α _{He/N2}	Ref
	GPU	/ -	/ -	GPU	/ -	/ -	
TR-6FDA-APAF	2.4	37.2	N.A.	2.4	26.4	N.A.	[4]
6FDA-APAF-BIA	1.8	317.4	N.A.	1.8	121.7	N.A.	[1]
Nafion-117	32.0	56.3	N.A.	32.0	94	N.A.	[5]
Poly(PFMD)	7.0	1650.0	N.A.	7.0	295.8	N.A.	[7]
Poly(PFMMD)	11.2	280.0	N.A.	11.2	72.7	N.A.	[0]
PIM-EA-TB	14.2	3.7	N.A.	14.2	4.90	N.A.	[7]
PIM-SBI-TB	5.6	2.0	N.A.	5.6	3.8	N.A.	[/]
Fluorinated PIM	202	61.2	N.A.	202	36.1	N.A.	[8]
FPIM-5	16.6	3770	N.A.	16.6	857	N.A.	[9]
Cellulose acetate	28.0	40.0	N.A.	28.0	46.7	N.A.	[10]
Polysulphone	0.52	49.0	N.A.	0.52	52.0	N.A.	[11]
PBDI	46	1000	N.A.	46	295	N.A.	[12]
STT	37.1	87.0	63.5	35.4	20.0	11.7	[13]
SAPO-34	554.1	N.A.	13.8	N.A.	N.A.	N.A.	[14]
DD3R	13.6	79.0	59.0	13.6	2.9	N.A.	[15]
TR-6FDA-APAF-Cardo	14.1	64	66.4	13.7	52	54.4	
TR-6FDA-APAF _{0.5} -Cardo	40.0	71.2	74.2	40.0	60.0	50.0	[16]
0.5/Al2O3	40.0	/1.2	/4.3	40.0	00.0	50.0	
Membrane M7	85	124	80	86	74	60	
Membrane M11	88	N.A.	75	89	N.A.	54	This
Membrane M12	80	N.A.	80	83	N.A.	59	
Membrane M13	91	N.A.	74	92	N.A.	52	WOLK
Membrane M14	76	N.A.	83	79	N.A.	61	

Table S5 Comparison of the performance of the $6FDA-APAF_{0.5}-BIA_{0.5}$ membranes with state-of-the-art membranes.

References

- Zhuang Y, Seong J, Lee W H, Do Y, Lee M J, Wang G, Guiver M, Lee Y M. Mechanically tough, thermally rearranged (TR) random/block poly(benzoxazole-co-imide) gas separation membranes. Macromolecules, 2015, 48: 5286-5299
- Mariola C, Doherty C M, Hill A J, Moo L Y. Cross-linked thermally rearranged poly(benzoxazole-co-imide) membranes for gas separation. Macromolecules, 2013, 46: 8179-8189
- 3. Gándara B C, Calle M, Jo H J, Hernández A, Campa J G d l, Abajo J d, Lozano A E, Lee Y M. Thermally rearranged polybenzoxazoles membranes with biphenyl

moieties: Monomer isomeric effect. Journal of Membrane Science, 2014, 450: 369-379

- 4. Calle M, Lee Y M. Thermally Rearranged (TR) Poly(ether-benzoxazole) Membranes for Gas Separation. Macromolecules, 2011, 44: 1156-1165
- Choi S H, Qahtani M S, Qasem E A. Multilayer thin-film composite membranes for helium enrichment. Journal of Membrane Science, 2018, 553: 180-188
- Yavari M, Fang M, Nguyen H, Merkel T C, Lin H, Okamoto Y. Dioxolane-based perfluoropolymers with superior membrane gas separation properties. Macromolecules, 2018, 51: 2489-2497
- Carta M, Evans R M, Croad M, Rogan Y, Jansen J C, Bernardo P, Bazzarelli F, McKeown N B. An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339: 303-307
- 8. Seong J G, Hee W L, Lee J, Lee S Y, Do Y S, Bae J Y, Moon S J, Park C H, Jo H J, Kim J S, Lee K R, Hung W S, Lai J Y, Ren Y, Roos C J, Lively R P, Lee Y M. Microporous polymers with cascaded cavities for controlled transport of small gas molecules. Science Advances, 2021, 7: eabi9062
- Ma X, Li K, Zhu Z, Dong H, Lv J, Wang Y, Pinnau I, Li J, Chen B, Han Y. High-performance polymer molecular sieve membranes prepared by direct fluorination for efficient helium enrichment. Journal Of Materials Chemistry A, 2021, 9: 18313-18322
- Gantzel P K, Merten U. Gas separations with high-flux cellulose acetate membranes. Industrial & Engineering Chemistry Process Design and Development, 1970, 9: 331-332
- McHattie J S, Koros W J, Paul D R. Gas transport properties of polysulphones: 2. Effect of bisphenol connector groups. Polymer, 1991, 32: 2618-2625
- Wang X, Shan M, Liu X, Wang M, Doherty C M, Osadchii D, Kapteijn F. High-performance polybenzimidazole membranes for helium extraction from natural gas. ACS Applied Materials & Interfaces, 2019, 11: 20098-20103
- Gong C, Peng X, Zhu M, Zhou T, You L, Ren S, Wang X, Gu X. Synthesis and performance of STT zeolite membranes for He/N₂ and He/CH₄ separation. Separation and Purification Technology, 2022, 301: 121927
- 14. Denning S, Lucero J, Koh C A, Carreon M A. Chabazite zeolite SAPO-34 membranes for He/CH₄ separation. ACS Materials Letters, 2019, 1: 655-659
- 15. Zhang P, Gong C, Zhou T, Du P, Song J, Shi M, Wang X, Gu X. Helium extraction from natural gas using DD3R zeolite membranes. Chinese Journal of Chemical Engineering, 2021, 49: 122-129
- 16. Wang L, Li Y, Zhang P, Chen X, Nian P, Wei Y, Lu H, Gu X, Wang X. Thermally rearranged poly(benzoxazole-co-imide) composite membranes on α-Al₂O₃ support

for helium extraction from natural gas. Journal of Membrane Science, 2022, 657: 120614