Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front. Electr. Electron. Eng.  2010, Vol. 5 Issue (1): 1-14   https://doi.org/10.1007/s11460-009-0065-3
  Research articles 本期目录
An overview on development of miniature unmanned rotorcraft systems
An overview on development of miniature unmanned rotorcraft systems
Guowei CAI1,Ben M. CHEN1,Tong H. LEE1, 2,
1.Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore; 2.2010-03-18 14:46:00;
 全文: PDF(481 KB)  
Abstract:In this article, we attempt to document a technical overview on modern miniature unmanned rotorcraft systems. We first give a brief review on the historical development of the rotorcraft unmanned aerial vehicles (UAVs), and then move on to present a fairly detailed and general overview on the hardware configuration, software integration, aerodynamic modeling and automatic flight control system involved in constructing the unmanned system. The applications of the emerging technology in the military and civilian domains are also highlighted.
Key wordsunmanned aerial vehicle (UAV)    rotorcraft    aerodynamic modeling    avionic systems    flight control systems
出版日期: 2010-03-05
 引用本文:   
. An overview on development of miniature unmanned rotorcraft systems[J]. Front. Electr. Electron. Eng., 2010, 5(1): 1-14.
Guowei CAI, Ben M. CHEN, Tong H. LEE. An overview on development of miniature unmanned rotorcraft systems. Front. Electr. Electron. Eng., 2010, 5(1): 1-14.
 链接本文:  
https://academic.hep.com.cn/fee/CN/10.1007/s11460-009-0065-3
https://academic.hep.com.cn/fee/CN/Y2010/V5/I1/1
Johnson E N, Schrage D P. The Georgia tech unmanned aerial research vehicle: GTMax. In: Proceedings of AIAA Guidance, Navigation, andControl Conference. Austin, 2003
Wood R J. The first takeoff of a biologically-inspired at-scalerobotic insect. IEEE Transactions on Robotics, 2008, 24(2): 341–347

doi: 10.1109/TRO.2008.916997
Nickol C, Guynn M, Kohout L, Ozoroski T. Highaltitude long endurance air vehicle analysis of alternatives and technologyrequirements development. In: Proceedingof the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, 2007
Cai G, Chen B M, Peng K, Dong M, Lee T H. Modeling and control systemdesign for a UAV helicopter. In: Proceedingsof the 14th Mediterranean Conference on Control and Automation. Ancona, 2006, 600–606
Cai G, Peng K, Chen B M, Lee T H. Design and assembling of a UAV helicopter system. In: Proceedings of the 5th International Conference on Control and Automation. Budapest, 2005, 697–702
Johnson W. Helicopter Theory. NewYork: Dover Publications, 1994
Gavrilets V, Frazzoli E, Mettler B, Piedmonte M, Feron E. Aggressivemaneuvering of small autonomous helicopters: a human-centered approach. International Journal of Robotics Research, 2001, 20(10): 795–807

doi: 10.1177/02783640122068100
Conway A R. Autonomous control of an unstable model helicopter usingcarrier phase GPS only. Dissertation for the Doctoral Degree. Stanford, CA: Stanford University, 1995
Musial M, Brandenburg U W, Hommel G. Inexpensive system design:the flying robot MARVIN. In: Proceedingsof the 16th International UAVs Conference on Unmanned Air VehicleSystems. Bristol, 2001, 23.1–23.12
Cai G, Cai A K, Chen B M, Lee T H. Construction, modeling and control of a mini autonomous UAV helicopter. In: Proceedings of the IEEE International Conferenceon Automation and Logistics. Qingdao, 2008, 449–454
Wang T. Development of a micro unmanned vertical take-off andlanding rotorcraft. Dissertation for the Bachelor Degree. National University of Singapore, 2009
Circular Error Probable(CEP). Technical paper 6. Air Force Operational Test and Evaluation Center, 1987
Mejias L, Saripalli S, Campoy P, Sukhatme G S. Visual servoing of an autonomous helicopter in urbanareas using feature tracking. Journal ofField Robotics, 2006, 23(3―4): 185–199

doi: 10.1002/rob.20115
Shim D H, Kim H J, Sastry S. Control system design for rotorcraft-basedunmanned aerial vehicle using time-domain system identification. In: Proceedings of the 2000 IEEE Conference onControl Applications. Anchorage, 2000, 808–813
Dong M, Chen B M, Cheng C. Development of 3D monitoring for an unmannedaerial vehicle. In: Proceedings of the1st International Conference on Computer Science and Education. Xiamen, 2006, 135–140
Dong M, Chen B M, Cai G, Peng K. Developmentof a real-time onboard and ground station software system for a UAVhelicopter. Journal of Aerospace Computing,Information, and Communication, 2007, 4(8): 933–955

doi: 10.2514/1.26408
Stevens B L, Lewis F L. AircraftControl and Simulation. 2nd ed. New Jersey: John Wiley, 2003
Tischler M B, Remple R K. Aircraft and Rotorcraft System Identification: Engineering MethodsWith Flight Test Examples. AIAA EducationalSeries. Reston: AIAA, 2006
Cai G, Chen B M, Lee T H, Dong M. Designand implementation of a hardware-in-the-loop simulation system forsmall-scale UAV helicopters. In: Proceedingsof the 2008 IEEE International Conference on Automation and Logistics. 2008, 29–34
Gavrilets V, Mettler B, Feron E. Nonlinear model for a small-sizeacrobatic helicopter. In: Proceedings of theAIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal, 2001
Civita M L, Messner W, Kanade T. Modeling of small-scale helicopterswith integrated first-principles and system-identification techniques. In: Proceedings of the 58th Forum of the AmericanHelicopter Society. Montreal, 2002, 2505–2516
Morris J C, van Nieuwstadt M, Bendotti P. Identification and controlof a model helicopter in hover. In: Proceedingsof the American Control Conference. Baltimore, 1994, 2: 1238–1242
Mettler B, Tischler M B, Kanade T. System identification ofsmall-size unmanned helicopter dynamics. In: Proceedings of the American Helicopter Society 55th Forum. Montreal, 1999
Cheng R P, Tischler M B, Schulein G J. RMAX helicopter state-spacemodel identification for hover and forward-flight. Journal of the American Helicopter Society, 2006, 51(2): 202–210

doi: 10.4050/JAHS.51.202
Mettler B M, Tischler M B, Kanade T. System identification modelingof a small-scale unmanned rotorcraft for control design. Journal of the American Helicopter Society, 2002, 47(1): 50–63

doi: 10.4050/JAHS.47.50
Cai G, Chen B M, Lee T H, Lum K Y. Comprehensive nonlinear modeling of an unmanned-aerial-vehicle helicopter. In: Proceedings of the 2008 AIAA Guidance, Navigationand Control Conference. Honolulu, 2008, 2008–7414
Mettler B. Identification, Modeling and Characteristics ofMiniature Rotorcraft. Boston: Kluver Academic Publishers, 2002
Weilenmann M W, Geering H P. A test bench for the rotorcraft hover control. In: Proceedings of AIAA Guidance Navigation and Control Conference. Monterey, 1993, 1371–1382
Shim D H, Kim H J, Sastry S. Decentralized nonlinear model predictivecontrol of multiple flying robots. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, 2003, 4: 3621–3626
Enns R, Si J. Helicopterflight control design using a learning control approach. In: Proceedings of the 39th IEEE Conference onDecision and Control. Sydney, 2000, 2: 1754–1759
Wan E A, Bogdanov A A. Model predictive neural control with applications to a 6 DOF helicoptermodel. In: Proceedings of the 2001 AmericanControl Conference. Arlington, 2001, 1: 488–493
Corban J E, Calise A J, Prasad J V R. Implementation of adaptivenonlinear control for flight test on an unmanned helicopter. In: Proceedings of the 37th IEEE Conference onDecision and Control. Tampa, 1998, 4: 3641–3646
Kadmiry B. Fuzzy control for an autonomous helicopter. Thesis No. 938 for the degree of Licenciate ofEngineering. Linkoping, 2002
Weilenmann M F, Christen U, Geering H P. Robust helicopter positioncontrol at hover. In: Proceedings of AmericanControl Conference. Baltimore, 1994, 3: 2491–2495
Koo T J, Sastry S. Outputtracking control design of a helicopter model based on approximatelinearization. In: Proceedings of the 37thIEEE Conference on Decision and Control. Tampa, 1998, 4: 3635–3640
Bogdanov A and Wan E. SDREcontrol with nonlinear feed forward compensation for a small unmannedhelicopter. In: Proceedings of the 2ndAIAA Unmanned Unlimited Systems, Technologies, and Operations Conference. San Diego, 2003, 2003–6512
Isidori A, Marconi L, Serrani A. Robust nonlinear motion controlof a helicopter. IEEE Transactions on AutomaticControl, 2003, 48(3): 413–426

doi: 10.1109/TAC.2003.809147
Gadewadikar J, Lewis F L, Subbarao K, Peng K, Chen B M. H-infinity static output-feedbackcontrol for rotorcraft. Journal of Intelligentand Robotic Systems, 2009, 54(4): 629–646

doi: 10.1007/s10846-008-9279-5
Enns R, Si J. Helicoptertrimming and tracking control using direct neural dynamic programming. IEEE Transactions on Neural Networks, 2003, 14(4): 929–939

doi: 10.1109/TNN.2003.813839
Sugeno M, Hirano I, Nakamura S, Kotsu S. Development of an intelligent unmanned helicopter. In: Proceedings of 1995 IEEE International Conferenceon Fuzzy Systems. Yokohama, 1995, 5: 33–34
Peng K, Dong M, Chen B M, Cai G, Lum K Y, Lee T H. Design and implementation of a fully autonomous flightcontrol system for a UAV helicopter. In: Proceedings of the 26th Chinese Control Conference. Zhangjiajie, 2007, 662–667
Chen B M, Lee T H, Peng K, Venkataramanan V. Compositenonlinear feedback control for linear systems with input saturation:theory and an application. IEEE Transactionson Automatic Control, 2003, 48(3): 427–439

doi: 10.1109/TAC.2003.809148
He Y, Chen B M, Wu C. Composite nonlinear control with stateand measurement feedback for general multivariable systems with inputsaturation. Systems & Control Letters, 2005, 54(5): 455–469

doi: 10.1016/j.sysconle.2004.09.010
Charles J. CMU’s autonomous helicopter explores new territory. IEEE Intelligent Systems and Their Applications, 1998, 13(5): 85–87
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed