Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2009, Vol. 4 Issue (1) : 66-71    https://doi.org/10.1007/s11460-009-0012-3
RESEARCH ARTICLE
Analysis of stability and robust stability for stochastic hybrid systems with impulsive effects
Ying YANG1(), Junmin LI1, Ying YANG2, Xiaofen LIU2
1. Department of Applied Mathematics, Xidian University, Xi’an 710071, China; 2. School of Mathematics and Statistics, Zhejiang University of Finance and Economy, Hangzhou 310018, China
 Download: PDF(130 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this article, the problems of stability and robust stability analysis are investigated for a class of Markovian switching stochastic systems, which has impulses at switching instants. The switching parameters considered form a continuous-time discrete-state homogeneous Markov process. Multiple Lyapunov techniques are used to derive sufficient conditions for stability in probability of the overall system. The conditions are in linear matrix inequalities form, and can be used to solve stabilization synthesis problems. The results are extended to the design of a robust-stabilized state-feedback controller as well. A numerical example shows the effectiveness of the proposed approach.

Keywords impulsive system      Markovian switching      stable in probability      linear matrix inequality (LMI)      robust stability     
Corresponding Author(s): YANG Ying,Email:yy1502@sina.com   
Issue Date: 05 March 2009
 Cite this article:   
Ying YANG,Junmin LI,Ying YANG, et al. Analysis of stability and robust stability for stochastic hybrid systems with impulsive effects[J]. Front Elect Electr Eng Chin, 2009, 4(1): 66-71.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-009-0012-3
https://academic.hep.com.cn/fee/EN/Y2009/V4/I1/66
1 Brockett R W. Lecture Notes on Stochastic Control. Cambridge, MA: Harvard University, 1995
2 Kushner H I, Dupuis P. Numerical Methods for Stochastic Control Problems in Continuous Time. 2nd ed. New York: Springer-Verlag, 2001
3 Klyatskin V I. Dynamics of Stochastic Systems. New York: Elsevier, 2005
4 Florchinger P. Lyapunov-like techniques for stochastic stability. SIAM Journal on Control and Optimization , 1995, 33(4): 1151–1169
doi: 10.1137/S0363012993252309
5 Has’minskii R Z. Stochastic Stability of Differential Equations. Groningen: Sijthoff & Noordhoff, 1980
6 Costa O L V, Fragoso M D. Stability results for discrete-time linear systems with markovian jumping parameters. Journal of Mathematical Analysis and Applications , 1993, 179(1): 154–178
doi: 10.1006/jmaa.1993.1341
7 De Farias D P, Geromel J C, Do Val J B R, Costa O L V. Output feedback control of Markov jump linear systems in continuous-time. IEEE Transactions on Automatic Control , 2000, 45(5): 944–949
doi: 10.1109/9.855557
8 Ji Y, Chizeck H J. Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control. IEEE Transactions on Automatic Control , 1990, 35(7): 777–788
doi: 10.1109/9.57016
9 Mao X. Stability of stochastic differential equations with Markovian switching. Stochastic Processes and Their Applications , 1999, 79(1): 45–67
doi: 10.1016/S0304-4149(98)00070-2
10 Yuan C. Lygeros J. Stabilization of a class of stochastic differential equations with Markovian switching. Systems & Control Letters , 2005, 54(9): 819–833
doi: 10.1016/j.sysconle.2005.01.001
11 Xie L, De Souza C E. Criteria for robust stability and stabilization of uncertain linear systems with state delay. Automatica , 1997, 33(9): 1657–1662
doi: 10.1016/S0005-1098(97)00082-4
12 Lien C H. New stability criterion for a class of uncertain nonlinear neutral time delay systems. International Journal of Systems Science , 2001, 32(2): 215–219
doi: 10.1080/00207720118657
13 Battilotti S, De Santis A. Dwell time controllers for stochastic systems with switching Markov chain. Automatica , 2005, 41(6): 923–934
doi: 10.1016/j.automatica.2004.11.024
14 Ye H, Michel A N, Hou L. Stability analysis of systems with impulse effects. IEEE Transactions on Automatic Control , 1998, 43(12): 1719–1723
doi: 10.1109/9.736069
15 Xie G, Wang L. Necessary and sufficient conditions for controllability and observability of switched impulsive control systems. IEEE Transactions on Automatic Control , 2004, 49(6): 960–966
doi: 10.1109/TAC.2004.829656
16 Xie L. Output feedback H control of systems with parameter uncertainty. International Journal of Control , 1996, 63(4): 741–750
doi: 10.1080/00207179608921866
[1] Haiyun AN, Hongjie JIA, Yuan ZENG, Wei WEI, . Equivalence of stability criteria for time-delay systems[J]. Front. Electr. Electron. Eng., 2010, 5(2): 207-217.
[2] MA Qingliang, HU Changhua. Gain-scheduled / filtering for linear discrete-time systems with polytopic uncertainties[J]. Front. Electr. Electron. Eng., 2008, 3(2): 208-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed