Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2009, Vol. 4 Issue (3) : 335-341    https://doi.org/10.1007/s11460-009-0033-y
RESEARCH ARTICLE
Numerical simulation of corona-induced vibration of high voltage conductor
A. GOURBI(), M. BRAHAMI, A. TILMATINE, P. PIROTTE
Djillali Liabes University, Sidi Bel Abbés 22000, Algeria
 Download: PDF(228 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

When it rains, electric power transmission lines start vibrating due to corona effect. This type of vibration is known as “corona-induced vibration”. The aim of this paper is to elaborate a mathematical model for numerical simulation of the corona-induced vibration, with consideration of the influence of the magnitude and the polarity of the electric field on the conductor surface. Finite element method was employed to develop the numerical model, and the finite difference method was used for the time discretisation. The moment of application of the corona-induced force is evaluated using the resultant vertical force applied to a water drop, suspended under a high voltage conductor. Some experimental results of other authors are exploited to evaluate the precision of the simulation and the validation of numerical results.

Keywords corona-induced vibration      corona wind      finite element method     
Corresponding Author(s): GOURBI A.,Email:aekett@yahoo.fr   
Issue Date: 05 September 2009
 Cite this article:   
A. GOURBI,M. BRAHAMI,A. TILMATINE, et al. Numerical simulation of corona-induced vibration of high voltage conductor[J]. Front Elect Electr Eng Chin, 2009, 4(3): 335-341.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-009-0033-y
https://academic.hep.com.cn/fee/EN/Y2009/V4/I3/335
Fig.1  Corona-induced vibration mechanism
Fig.2  Interpolation function corresponding to linear element
Fig.3  Amplitude of central node versus electrical field (conductor supplied by negative HV direct current (DC))
Fig.4  Amplitude of central node versus electrical field (conductor supplied by positive HV direct current (DC))
Fig.5  Amplitude of central node versus electrical field (conductor supplied by negative HV alternating current (AC))
Fig.6  Variation of amplitude vibrations of central node during 20 seconds
Fig.7  Variation of amplitude vibrations of central node during first 4 seconds
1 Burnett D S. Finite Element Analysis. Addison-Wesley Publishing Company , 1988
2 Kawamoto H, Umezu S. Electrohydrodynamic deformation of water surface in a metal pin to water plate corona discharge system. Journal of Physics D: Applied Physics , 2005, 38(6): 887-894
doi: 10.1088/0022-3727/38/6/017
3 Kawamoto H, Umezu S. Force at spark discharge in pin-to-plate system. Journal of Electrostatics , 2007, 65(2): 75-81
doi: 10.1016/j.elstat.2006.06.002
4 Kollar L E, Farzaneh M, Karev A R. Modeling droplet collision and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution. International Journal of Multiphase Flow , 2005, 31(1): 69-92
doi: 10.1016/j.ijmultiphaseflow.2004.08.007
5 Kollar L E, Farzaneh M. Vibration of bundled conductors following ice shedding. IEEE Transactions on Power Delivery , 2008, 23(2): 1097-1104
doi: 10.1109/TPWRD.2007.915876
6 Derakhshanin M. Simulations numériques des vibrations induites par effet de couronne sur un court conducteur soumis à une pluie artificielle. Dissertation for the Master’s Degree . Chicoutimi: Université of Chicoutimi, 2001
7 Demers P. Simulations numériques des vibrations induites par effet de couronne sur les conducteurs à haute tension. Dissertation for the Master’s Degree . Chicoutimi: Université of Chicoutimi, 1994
8 Farzaneh M. Contribution à l’étude des mécanismes de vibrations induites par effet de couronne. Dissertation for the Doctoral Degree . Toulouse: Université of Paul Sabatier, 1986
9 Farzaneh M, Teisseyre Y. Mechanical vibration of HV conductors induced by corona: roles of the space charge and ionic wind. IEEE Transactions on Power Delivery , 1988, 3(3): 1122-1130
doi: 10.1109/61.193894
10 Farzaneh M. Effects of the intensity of precipitation and transverse wind on the corona-induced vibration of HV conductors. IEEE Transactions on Power Delivery , 1992, 7(2): 674-680
doi: 10.1109/61.127066
11 Hamel M. Influence de la variation de la température ambiante sur les vibrations induites par effet de couronne. Dissertation for the Master’s Degree . Chicoutimi: université of Chicoutimi, 1991
12 Phan L C, Adachi T, Allaire M C. Experimental investigations of corona-induced vibration on high voltage conductors with different types of supports. IEEE Transactions on Power Apparatus and Systems , 1981, PAS-100(4): 1975-1984
doi: 10.1109/TPAS.1981.316552
13 Staub C. Modélisation dynamique de procédés de forgeage. Dissertation for the Doctoral Degree . Lyon: The National Applied Science Institute, 1998
[1] Majid Ghasemi KAHRISANGI, Arash Hassanpour ISFAHANI, Sadegh VAEZ-ZADEH, Mohammad Rajabi SEBDANI. Line-start permanent magnet synchronous motors versus induction motors: A comparative study[J]. Front Elect Electr Eng, 2012, 7(4): 459-466.
[2] Abdelkader KANSSAB, Abdelhalim ZAOUI, Mouloud FELIACHI. Modeling and optimization of induction cooking by the use of magneto-thermal finite element analysis and genetic algorithms[J]. Front Elect Electr Eng, 2012, 7(3): 312-317.
[3] LIU Rui-fang, YAN Deng-jun, HU Min-qiang. Investigation in Determining the Relative Position between Stator and Rotor of a PMSM in Electromagnetic Field Calculation[J]. Front. Electr. Electron. Eng., 2006, 1(1): 67-71.
[4] HE Xiao-xiang, XU Jin-ping. IBC/FEM Analysis of Electromagnetic Scatter of Cavities Coated with Layered Medium[J]. Front. Electr. Electron. Eng., 2006, 1(1): 88-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed