Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2009, Vol. 4 Issue (3) : 330-334    https://doi.org/10.1007/s11460-009-0054-6
RESEARCH ARTICLE
Preliminary design of 1 MW, Ku-band gyrotron traveling-wave amplifier
Chongqing JIAO()
Beijing Key Laboratory of High Voltage & EMC, North China Electric Power University, Beijing 102206, China
 Download: PDF(151 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The preliminary design results of a 1-MW, Ku-band gyrotron traveling wave amplifier (gyro-TWA) are presented. Operating at the second cyclotron harmonic of the TE11 mode, the amplifier characterizes good stability even in the case of no distributed losses loaded, which could potentially allow it to be operated at high average power. Large signal simulation shows that the amplifier can generate a saturated peak power of about 1 MW with efficiency of 26.6%, gain of 31 dB, and 3-dB bandwidth of about 1 GHz when driven by a 100 kV, 40 A electron beam with 5% axial velocity spread.

Keywords gyrotron traveling wave amplifier (gyro-TWA)      Ku-band      millimeter wave amplifier     
Corresponding Author(s): JIAO Chongqing,Email:cqjiao@ncepu.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Chongqing JIAO. Preliminary design of 1 MW, Ku-band gyrotron traveling-wave amplifier[J]. Front Elect Electr Eng Chin, 2009, 4(3): 330-334.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-009-0054-6
https://academic.hep.com.cn/fee/EN/Y2009/V4/I3/330
Fig.1  Dispersion diagram of operating mode and possible oscillating modes (100 kV, =1.0)
Fig.2  Dependence of beam-wave coupling coefficient on guiding-center radius for operating mode and possible competing modes
Fig.3  Dependence on applied magnetic field of start-oscillation current for TE mode, second-harmonic absolute instability
Fig.4  Dependence on applied magnetic field of start-oscillation current and frequency for TE mode, third-harmonic gyro-BWO
Fig.5  Starting current of TE gyromonotron-type oscillation versus applied magnetic field with =60 cm and =30000
Fig.6  Dispersion diagram of TE second-harmonic gyro-TWA for different values of applied magnetic field
Fig.7  Calculated saturated power and efficiency of amplifier for different values of velocity spread
Fig.8  Calculated saturated gain of amplifier for different values of velocity spread
1 Felch K L, Danly B G, Jory H R, Kreischer K E, Lawson W, Levush B, Temkin R J. Characteristics and applications of fast-wave gyrodevices. Proceedings of the IEEE , 1999, 87(5): 752-781
doi: 10.1109/5.757254
2 Chu K R. Overview of research on the gyrotron traveling-wave amplifier. IEEE Transactions on Plasma Science , 2002, 30(3): 903-908
doi: 10.1109/TPS.2002.801560
3 Granatstein V L, Levush B, Danly B G, Parker R K. A quarter century of gyrotron research and development. IEEE Transactions on Plasma Science , 1997, 25(6): 1322-1335
doi: 10.1109/27.650903
4 Lau Y Y, Chu K R, Barnett L R, Granatstein V L. Gyrotron travelling wave amplifier: I. Analysis of oscillations. International Journal of Infrared and Millimeter Waves , 1981, 2(3): 373-393
doi: 10.1007/BF01007408
5 Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R. Ultrahigh gain gyrotron traveling wave amplifier. Physical Review Letters , 1998, 81(21): 4760-4763
doi: 10.1103/PhysRevLett.81.4760
6 Garven M, Calame J P, Danly B G, Nguyen K T, Levush B, Wood F N, Pershing D E. A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region. IEEE Transactions on Plasma Science , 2002, 30(3): 885-893
doi: 10.1109/TPS.2002.801650
7 Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T, Dialetis D J. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier. IEEE Transactions on Plasma Science , 1999, 27(2): 391-404
doi: 10.1109/27.772266
8 Bratman V L, Cross A W, Denisov G G, He W, Phelps A D, Ronald K, Samsonov S V, Whyte C G, Young A R. High-gain wide-band gyrotron traveling-wave amplifier with a helically corrugated waveguide. Physical Review Letters , 2000, 84(12): 2746-2749
doi: 10.1103/PhysRevLett.84.2746
9 Wang Q S, McDermott D B, Luhmann N C Jr. Operation of a stable 200-kW second-harmonic gyro-TWT amplifier. IEEE Transactions on Plasma Science , 1996, 24(3): 700-706
doi: 10.1109/27.533071
10 Rodgers J, Guo H, Granaatstein V L, Chen S H, Nusinovich G S, Walter M, Zhao J. High efficiency, phase-locked operation of the harmonic-multiplying inverted gyrotwystron oscillator. IEEE Transactions on Plasma Science , 1999, 27(2): 412-421
doi: 10.1109/27.772268
11 Jiao C Q, Luo J R. Preliminary design of a harmonic-doubling gyrotron traveling wave amplifier. International Journal of Infrared and Millimeter Waves , 2007, 28(12): 1095-1101
doi: 10.1007/s10762-007-9298-5
12 Lin A T, Chu K R, Lin C C, Kou C S, McDermott D B, Luhmann N C Jr. Marginal stability design criterion for gyro-TWT’s and comparison of fundamental with second harmonic operation. International Journal of Electronics , 1992, 72(5): 873-885
doi: 10.1080/00207219208925621
13 Chu K R, Lin A T. Gain and bandwidth of the gyro-TWT and CARM amplifiers. IEEE Transactions on Plasma Science , 1988, 16(2): 90-104
doi: 10.1109/27.3798
14 Kou C S, Wang Q S, McDermott D B, Lin A T, Chin K R, Luhmann N C Jr. High-power harmonic gyro-TWT’s. I. Linear theory and oscillation study. IEEE Transactions on Plasma Science , 1992, 20(3): 155-162
doi: 10.1109/27.142815
15 Danly B G, Temkin R J. Generalized nonlinear harmonic gyrotron theory. Physics of Fluids , 1986, 29(2): 561-567
doi: 10.1063/1.865446
16 Wang Q S, Kou C S, McDermott D B, Lin A T, Chu K R, Luhmann N C. High-power harmonic gyro-TWT’s. II. Nonlinear theory and design. IEEE Transactions on Plasma Science , 1992, 20(3): 163-169
doi: 10.1109/27.142816
17 Jiao C Q, Luo J R. Linear and nonlinear analysis of a gyrotron traveling wave amplifier with misaligned electron beam. Physics of Plasmas , 2006, 13(11): 113101-1-113101-7
18 Lau Y Y, Chu K R, Barnett L, Granatstein V L. Gyrotron travelling wave amplifier: II. Effects of velocity spread and wall resistivity. International Journal of Infrared and Millimeter Waves , 1981, 2(3): 395-413
doi: 10.1007/BF01007409
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed