|
|
|
Machine learning and intelligence science: Sino-foreign interchange workshop IScIDE2010 (A) |
Lei XU1( ), Yanda LI2( ) |
| 1. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China; 2. Department of Automation, Tsinghua University, Beijing 100084, China |
|
|
|
|
|
|
Corresponding Author(s):
XU Lei,Email:lxu@cse.cuhk.edu.hk; LI Yanda,Email:daulyd@tsinghua.edu.cn
|
|
Issue Date: 05 March 2011
|
|
| 1 |
He X, Niyogi P. Locality preserving projections. In: Advances in Neural Information Processing Systems 16. Cambridge , MA: MIT Press, 2003, 152-160
|
| 2 |
He X, Cai D, Niyogi P. Tensor subspace analysis. In: Proceedings of Advances in Neural Information Processing Systems . 2005, 18: 499-506
|
| 3 |
Kohonen T. Self-organized formation of topologically correct feature map. Biological Cybernetics , 1982, 43(1): 59-69 doi: 10.1007/BF00337288
|
| 4 |
Kohonen T. Self-Organizing Maps. 2nd ed. Berlin: Springer, 1997
|
| 5 |
Yin H. Data visualisation and manifold mapping using the ViSOM. Neural Networks , 2002, 15(8-9): 1005-1016 doi: 10.1016/S0893-6080(02)00075-8
|
| 6 |
Yin H. On multidimensional scaling and the embedding of self-organising maps. Neural Networks , 2008, 21(2-3): 160-169 doi: 10.1016/j.neunet.2007.12.027
|
| 7 |
Oja E. Neural networks, principal components, and subspaces. International Journal of Neural Systems , 1989, 1(1): 61-68 doi: 10.1142/S0129065789000475
|
| 8 |
Oja E, Ogawa H, Wangviwattana J. Learning in nonlinear constrained Hebbian networks. In: Proceedings of ICANN’91 . 1991, 385-390
|
| 9 |
Xu L. Least MSE reconstruction for self-organization. In: Proceedings of IJCNN91-Singapore . 1991, 3: 2363-2373
|
| 10 |
Hastie T, Stuetzle W. Principal curves. Journal of the American Statistical Association , 1989, 84(406): 502-516 doi: 10.2307/2289936
|
| 11 |
LeBlanc M, Tibshirani R J. Adaptive principal surfaces. Journal of the American Statistical Association , 1994, 89(425): 53-64 doi: 10.2307/2291200
|
| 12 |
Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation , 1998, 10(5): 1299-1319 doi: 10.1162/089976698300017467
|
| 13 |
Ham J, Lee D D, Mika S, Scholkopf B. A kernel view of the dimensionality reduction of manifolds. In: Proceedings of the 21st International Conference on Machine Learning . 2004, 369-376
|
| 14 |
Xu L. Independent Subspaces. In: Ramón J, Dopico R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence . Hershey(PA): IGI Global, 2008, 903-912 doi: 10.4018/9781599048499.ch132
|
| 15 |
Yang J, Zhang D, Frangi A F, Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004, 26(1): 131-137 doi: 10.1109/TPAMI.2004.1261097
|
| 16 |
Xu L, Krzyzak A, Suen C Y. Several methods for combining multiple classifiers and their applications in handwritten character recognition. IEEE Transactions on Systems, Man, and Cybernetics , 1992, 22: 418-435 doi: 10.1109/21.155943
|
| 17 |
Kittler J, Hatef M, Duin R P W, Matas J. On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1998, 20(3): 226-239 doi: 10.1109/34.667881
|
| 18 |
Hansen L K, Salamon P. Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1990, 12(10): 993-1001 doi: 10.1109/34.58871
|
| 19 |
Xu L, Krzyzak A, Sun C Y. Associative switch for combining multiple classifiers. In: Proceedings of IJCNN91, Seattle, WA . 1991, (I): 43-48
|
| 20 |
Wolpert D H. Stacked generalization. Neural Networks , 1992, 5(2): 241-259 doi: 10.1016/S0893-6080(05)80023-1
|
| 21 |
Baxt WG. Improving the accuracy of an artificial neural network using multiple differently trained networks. Neural Computation , 1992, 4(5): 772-780 doi: 10.1162/neco.1992.4.5.772
|
| 22 |
Breiman L. Stacked Regression. Department of Statistics, Berkeley . 1992, TR-367
|
| 23 |
Jacobs R A, Jordan M I, Nowlan S J, Hinton G E. Adaptive mixtures of local experts. Neural Computation , 1991, 3(1): 79-87 doi: 10.1162/neco.1991.3.1.79
|
| 24 |
Jordan M I, Jacobs R A. Hierarchical mixtures of experts and the EM algorithm. Neural Computation , 1994, 6(2): 181-214 doi: 10.1162/neco.1994.6.2.181
|
| 25 |
Jordan M I, Xu L. Convergence Results for The EM Approach to Mixtures of Experts Architectures. Neural Networks , 1995, 8(9): 1409-1431 doi: 10.1016/0893-6080(95)00014-3
|
| 26 |
Xu L, Jordan M I, Hinton G E. An Alternative Model for Mixtures of Experts. In: Cowan , Tesauro , Alspector , eds. Advances in Neural Information Processing Systems 7 . MIT Press, 1995, 633-640
|
| 27 |
Xu L, Jordan M I, Hinton G E. A modified gating network for the mixtures of experts architecture, Proc. In: Proceedings of WCNN’94, San Diego, CA . 1994, (2): 405-410
|
| 28 |
Xu L, Jordan M I. EM learning on a generalized finite mixture model for combining multiple classifiers. In: Proceedings of WCNN’93 . 1993, (IV): 227-230
|
| 29 |
Dempster A P, Laird N M, Rubin D B. Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B. Methodological , 1977, 39(1): 1-38
|
| 30 |
Redner R A, Walker H F. Mixture densities, maximum likelihood, and the EM algorithm. SIAM Review , 1984, 26(2): 195-239 doi: 10.1137/1026034
|
| 31 |
Xu L, Amari S. Combining classifiers and learning mixture-of-experts. In: Dopico J R R, Dorado J, Pazos A, eds. Encyclopedia of Artificial Intelligence . 2009, 318-326
|
| 32 |
Lu B L, Ito M. Task decomposition and module combination based on class relations: a modular neural network for pattern classification. IEEE Transactions on Neural Networks , 1999, 10(5): 1244-1256 doi: 10.1109/72.788664
|
| 33 |
Miller D J, Uyar H S. A mixture of experts classifier with learning based on both labelled and unlabelled data. In: Mozer M, Jordan M I, Petsche T, eds. Advances in Neural Information Processing Systems 9 . Cambridge: MIT Press, 1997, 571-577
|
| 34 |
Xu L. Bayesian Ying Yang system and theory as a unified statistical learning approach: (I) Unsupervised and semi-unsupervised learning. In: Amari S, Kassabov N, eds. Brain-like Computing and Intelligent Information Systems. Springer-Verlag , 1997, 241-274
|
| 35 |
Zhou Z H, Wu J, Tang W. Ensembling neural networks: many could be better than all. Artificial Intelligence , 2002, 137(1-2): 239-263 doi: 10.1016/S0004-3702(02)00190-X
|
| 36 |
Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers. IEEE Transactions on Knowledge and Data Engineering , 2005, 17(11): 1529-1541 doi: 10.1109/TKDE.2005.186
|
| 37 |
Stockham T G, Cannon T M, Ingebretsen R B. Blind deconvolution through digital signal processing. Proceedings of the IEEE , 1975, 63(4): 678-692 doi: 10.1109/PROC.1975.9800
|
| 38 |
Kundur D, Hatzinakos D. Blind image deconvolution revisited. IEEE Signal Processing Magazine , 1996, 13(6): 61-63 doi: 10.1109/79.543976
|
| 39 |
Xu L, Yan P F, Chang T. Semi-blind deconvolution of finite length sequence: (I) linear problem & (II) nonlinear problem. SCIENTIA SINICA, Series A , 1987, (12): 1318-1344
|
| 40 |
Xu L. Bayesian Ying-Yang system, best harmony learning, and five action circling. Frontiers of Electrical and Electronic Engineering in China , 2010, 5(3): 281-328 doi: 10.1007/s11460-010-0108-9
|
| 41 |
Caianiello E R. Some remarks on organization and structure. Biological Cybernetics , 1977, 26(3): 151-158 doi: 10.1007/BF00365226
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|