|
|
|
A primary-secondary background model with sliding window PCA algorithm |
Hailong ZHU( ), Peng LIU, Jiafeng LIU, Xianglong TANG |
| School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China |
|
|
|
|
Abstract Rain and snow seriously degrade outdoor video quality. In this work, a primary-secondary background model for removal of rain and snow is built. First, we analyze video noise and use a sliding window sequence principal component analysis de-nosing algorithm to reduce white noise in the video. Next, we apply the Gaussian mixture model (GMM) to model the video and segment all foreground objects primarily. After that, we calculate von Mises distribution of the velocity vectors and ratio of the overlapped region with referring to the result of the primary segmentation and extract the interesting object. Finally, rain and snow streaks are inpainted using the background to improve the quality of the video data. Experiments show that the proposed method can effectively suppress noise and extract interesting targets.
|
| Keywords
sliding window sequence principal component analysis
primary-secondary background model
removal of rain and snow
Gaussian mixture model (GMM)
|
|
Corresponding Author(s):
ZHU Hailong,Email:zhl04512004@yahoo.com.cn
|
|
Issue Date: 05 December 2011
|
|
| 1 |
Drew M S, Wei J, Li Z N. Illumination — invariant image retrieval and video segmentation. Pattern Recognition , 1999, 32(8): 1369–1388
|
| 2 |
Bianco S, Cusano C. Color target localization under varying illumination conditions. Computational Color Imaging. Lecture Notes in Computer Science , 2011, 6626: 245–255 doi: 10.1007/978-3-642-20404-3_19
|
| 3 |
Freedman D, Turek M W. Illumination — Invariant tracking via graph cuts. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Washington DC: IEEE Computer Society, 2005, 2: 10–17
|
| 4 |
Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision , 2002, 48(3): 233–254 doi: 10.1023/A:1016328200723
|
| 5 |
Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Washington DC: IEEE Computer Society, 1999, 2: 2246–2252
|
| 6 |
Greenspan H, Goldberger J, Mayer A. Probabilistic space-time video modeling via piecewise GMM. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004, 26(3): 384–396 doi: 10.1109/TPAMI.2004.1262334 pmid:15376884
|
| 7 |
Garg K, Nayar S K. Detection and removal of rain from videos. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Washington DC: IEEE Computer Society, 2004, 1: 528–535
|
| 8 |
Garg K, Nayar S K. Photorealistic rendering of rain streaks. ACM Transactions on Graphics , 2006, 25(3): 996–1002 doi: 10.1145/1141911.1141985
|
| 9 |
Garg K, Nayar S K. Vision and rain. International Journal of Computer Vision , 2007, 75(1): 3–27 doi: 10.1007/s11263-006-0028-6
|
| 10 |
Barnum P C, Narasimhan S, Kanade T. Analysis of rain and snow in frequency space. International Journal of Computer Vision , 2009, 86(2-3): 256–274 doi: 10.1007/s11263-008-0200-2
|
| 11 |
Barnum P, Kanade T, Narasimhan S G. Spatio-temporal frequency analysis for removing rain and snow from videos. In: Proceedings of the First International Workshop on Photometric Analysis for Computer Vision, in conjunction with International Conference of Computer Vision . Rio de Janeiro: INRIA, 2007, 1–8
|
| 12 |
Starik S, Werman M. Simulation of rain in videos. In: Proceedings of the 3rd International Workshop on Texture Analysis and Synthesis . Edinburgh: IEEE Press, 2003, 95–100
|
| 13 |
Zhang X P, Li H, Qi Y Y, Leow W K, Ng T K. Rain removal in video by combining temporal and chromatic properties. In: Proceedings of the 2006 IEEE International Conference on Multimedia and Expo . Washington DC: IEEE Computer Society, 2006, 461–464
|
| 14 |
Faraji H, MacLean W J. CCD noise removal in digital images. IEEE Transactions on Image Processing , 2006, 15(9): 2676–2685 doi: 10.1109/TIP.2006.877363 pmid:16948312
|
| 15 |
Khatri C G, Mardia K V. The von Mises-Fisher matrix distribution in orientation statistics. Journal of the Royal Statistical Society. Series B (Methodological) , 1977, 39(1): 95–106
|
| 16 |
Rousseau P, Jolivet V, Ghazanfarpour D. Realistic real-time rain rendering. Computers & Graphics , 2006, 30(4): 507–518 doi: 10.1016/j.cag.2006.03.013
|
| 17 |
Foote G B, Du Toit P S. Terminal velocity of raindrops aloft. Journal of Applied Meteorology , 1969, 8(2): 249–253 doi: 10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|