Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2011, Vol. 6 Issue (4) : 528-534    https://doi.org/10.1007/s11460-011-0147-x
RESEARCH ARTICLE
A primary-secondary background model with sliding window PCA algorithm
Hailong ZHU(), Peng LIU, Jiafeng LIU, Xianglong TANG
School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(544 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rain and snow seriously degrade outdoor video quality. In this work, a primary-secondary background model for removal of rain and snow is built. First, we analyze video noise and use a sliding window sequence principal component analysis de-nosing algorithm to reduce white noise in the video. Next, we apply the Gaussian mixture model (GMM) to model the video and segment all foreground objects primarily. After that, we calculate von Mises distribution of the velocity vectors and ratio of the overlapped region with referring to the result of the primary segmentation and extract the interesting object. Finally, rain and snow streaks are inpainted using the background to improve the quality of the video data. Experiments show that the proposed method can effectively suppress noise and extract interesting targets.

Keywords sliding window sequence principal component analysis      primary-secondary background model      removal of rain and snow      Gaussian mixture model (GMM)     
Corresponding Author(s): ZHU Hailong,Email:zhl04512004@yahoo.com.cn   
Issue Date: 05 December 2011
 Cite this article:   
Hailong ZHU,Peng LIU,Jiafeng LIU, et al. A primary-secondary background model with sliding window PCA algorithm[J]. Front Elect Electr Eng Chin, 2011, 6(4): 528-534.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-011-0147-x
https://academic.hep.com.cn/fee/EN/Y2011/V6/I4/528
Fig.1  Sliding window
Fig.2  Overlapped region of three consecutive frames of a child. (a) Frame 1341; (b) frame 1342; (c) frame 1343; (d) overlapped region
Fig.3  Results of SWPCA and traditional PCA. (a) Video; (b) add Gaussian noise; (c) rain removal after SWPCA de-nosing; (d) errors of SWPCA and PCA; (e) residual errors convergence curves. (, , , , )
Fig.4  Snow removal. (a) Video and orientation statistic of an image block by von Mises distribution; (b) all foreground objects by the primary segmentation; (c) different motion property between snowflakes and persons; (d) result of the secondary segmentation; (e) snow removal result
1 Drew M S, Wei J, Li Z N. Illumination — invariant image retrieval and video segmentation. Pattern Recognition , 1999, 32(8): 1369–1388
2 Bianco S, Cusano C. Color target localization under varying illumination conditions. Computational Color Imaging. Lecture Notes in Computer Science , 2011, 6626: 245–255
doi: 10.1007/978-3-642-20404-3_19
3 Freedman D, Turek M W. Illumination — Invariant tracking via graph cuts. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Washington DC: IEEE Computer Society, 2005, 2: 10–17
4 Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision , 2002, 48(3): 233–254
doi: 10.1023/A:1016328200723
5 Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Washington DC: IEEE Computer Society, 1999, 2: 2246–2252
6 Greenspan H, Goldberger J, Mayer A. Probabilistic space-time video modeling via piecewise GMM. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2004, 26(3): 384–396
doi: 10.1109/TPAMI.2004.1262334 pmid:15376884
7 Garg K, Nayar S K. Detection and removal of rain from videos. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Washington DC: IEEE Computer Society, 2004, 1: 528–535
8 Garg K, Nayar S K. Photorealistic rendering of rain streaks. ACM Transactions on Graphics , 2006, 25(3): 996–1002
doi: 10.1145/1141911.1141985
9 Garg K, Nayar S K. Vision and rain. International Journal of Computer Vision , 2007, 75(1): 3–27
doi: 10.1007/s11263-006-0028-6
10 Barnum P C, Narasimhan S, Kanade T. Analysis of rain and snow in frequency space. International Journal of Computer Vision , 2009, 86(2-3): 256–274
doi: 10.1007/s11263-008-0200-2
11 Barnum P, Kanade T, Narasimhan S G. Spatio-temporal frequency analysis for removing rain and snow from videos. In: Proceedings of the First International Workshop on Photometric Analysis for Computer Vision, in conjunction with International Conference of Computer Vision . Rio de Janeiro: INRIA, 2007, 1–8
12 Starik S, Werman M. Simulation of rain in videos. In: Proceedings of the 3rd International Workshop on Texture Analysis and Synthesis . Edinburgh: IEEE Press, 2003, 95–100
13 Zhang X P, Li H, Qi Y Y, Leow W K, Ng T K. Rain removal in video by combining temporal and chromatic properties. In: Proceedings of the 2006 IEEE International Conference on Multimedia and Expo . Washington DC: IEEE Computer Society, 2006, 461–464
14 Faraji H, MacLean W J. CCD noise removal in digital images. IEEE Transactions on Image Processing , 2006, 15(9): 2676–2685
doi: 10.1109/TIP.2006.877363 pmid:16948312
15 Khatri C G, Mardia K V. The von Mises-Fisher matrix distribution in orientation statistics. Journal of the Royal Statistical Society. Series B (Methodological) , 1977, 39(1): 95–106
16 Rousseau P, Jolivet V, Ghazanfarpour D. Realistic real-time rain rendering. Computers & Graphics , 2006, 30(4): 507–518
doi: 10.1016/j.cag.2006.03.013
17 Foote G B, Du Toit P S. Terminal velocity of raindrops aloft. Journal of Applied Meteorology , 1969, 8(2): 249–253
doi: 10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2
[1] Lei SHI, Shikui TU, Lei XU. Learning Gaussian mixture with automatic model selection: A comparative study on three Bayesian related approaches[J]. Front Elect Electr Eng Chin, 2011, 6(2): 215-244.
[2] Rongyan WANG, Gang LIU, Jun GUO, Yu FANG, . Multi-class classifier of non-speech audio based on Fisher kernel[J]. Front. Electr. Electron. Eng., 2010, 5(1): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed