Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng Chin    2011, Vol. 6 Issue (2) : 339-346    https://doi.org/10.1007/s11460-011-0151-1
RESEARCH ARTICLE
Feature extraction for classification of different weather conditions
Xudong ZHAO(), Peng LIU, Jiafeng LIU, Xianglong TANG
School of Computer Science, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(533 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Classification of different weather conditions provides a first step support for outdoor scene modeling, which is a core component in many different applications of outdoor video analysis and computer vision. Features derived from intrinsic properties of the visual effects of different weather conditions contribute to successful classification. In this paper, features representing both the autocorrelation of pixel-wise intensities over time and the max directional length of rain streaks or snowflakes are proposed. Based on the autocorrelation of each pixel’s intensities over time, two temporal features are used for coarse classification of weather conditions according to their visual effects. On the other hand, features are extracted for fine classification of video clips with rain and snow. The classification results on 249 video clips associated with different weather conditions indicate the effectiveness of the extracted features, by using C-SVM as the classifier.

Keywords feature extraction      classification      rain      snow      illumination variation      weather condition      autocorrelation function     
Corresponding Author(s): ZHAO Xudong,Email:percydd@163.com   
Issue Date: 05 June 2011
 Cite this article:   
Peng LIU,Jiafeng LIU,Xianglong TANG, et al. Feature extraction for classification of different weather conditions[J]. Front Elect Electr Eng Chin, 2011, 6(2): 339-346.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-011-0151-1
https://academic.hep.com.cn/fee/EN/Y2011/V6/I2/339
1 Zhang B C, Gao Y S, Zhao S Q, Zhong B. Kernel similarity modeling of texture pattern flow for motion detection in complex background. IEEE Transactions on Circuits and Systems for Video Technology , 2011, 21(1): 29-38
doi: 10.1109/TCSVT.2011.2105591
2 Khan Z H, Gu I Y H, Backhouse A G. Robust visual object tracking using multi-mode anisotropic mean shift and particle filters. IEEE Transactions on Circuits and Systems for Video Technology , 2011, 21(1): 74-87
doi: 10.1109/TCSVT.2011.2106253
3 Woo H, Jung Y M, Kim J G, Seo J K. Environmentally robust motion detection for video surveillance. IEEE Transactions on Image Processing , 2010, 19(11): 2838-2848
doi: 10.1109/TIP.2010.2050644
4 Gouko M, Ito K. An action generation model by using time series prediction and its application to robot navigation. International Journal of Neural Systems , 2009, 19(2): 105-113
doi: 10.1142/S0129065709001872
5 Geetha M K, Palanivel S. A novel event-oriented segmentof-interest discovery method for surveillance video. International Journal of Computational Intelligence Systems , 2009, 2(1): 39-50
doi: 10.2991/jnmp.2009.2.1.5
6 Maddalena L, Petrosino A. Video classification and shot detection for video retrieval applications. IEEE Transactions on Image Processing , 2008, 17(7): 1168-1177
doi: 10.1109/TIP.2008.924285
7 Narasimhan S G, Nayar S K. Vision and the atmosphere. International Journal of Computer Vision , 2002, 48(3): 233-254
doi: 10.1023/A:1016328200723
8 Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2003, 25(6): 713-724
doi: 10.1109/TPAMI.2003.1201821
9 Fattal R. Single image dehazing. In: Proceedings of International Conference on Computer Graphics and Interactive Techniques . 2008, 1-9
10 He K, Sun J, Tang X. Single image haze removal using dark channel prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 2009, 1956-1963
11 Garg K, Nayar S K. Detection and removal of rain from videos. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 2004, 528-535
12 Garg K, Nayar S K. Vision and rain. International Journal of Computer Vision , 2007, 75(1): 3-27
doi: 10.1007/s11263-006-0028-6
13 Zhang X, Li H, Qi Y, Leow W, Ng T. Rain removal in video by combining temporal and chromatic properties. In: Proceedings of the International Conference on Multimedia and Expo . 2006, 461-464
doi: 10.1109/ICME.2006.262572
14 Barnum P, Kanade T, Narasimhan S G. Spatio-temporal frequency analysis for removing rain and snow from videos. In: Workshop on Photometric Analysis for Computer Vision . 2007
15 Garg K, Nayar S K. When does a camera see rain? In: Proceedings of the Tenth IEEE International Conference on Computer Vision . 2005, 2: 1067-1074
16 Li L, Huang W, Gu I Y, Tian Q. Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing , 2004, 13(11): 1459-1472
doi: 10.1109/TIP.2004.836169
17 Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 1999, 256-261
18 Fan J Q, Yao Q W. Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer-Verlag, 2008
[1] B. KARTHIK, I. ALAGARASAN, S. CHANDRASEKAR. Optimal location of interline power flow controller for controlling multi transmission line: A new integrated technique[J]. Front Elect Electr Eng, 2012, 7(4): 447-458.
[2] R. AMBIKAIRAJAH, B. T. PHUNG, J. RAVISHANKAR. The fusion of classifier outputs to improve partial discharge classification[J]. Front Elect Electr Eng, 2012, 7(4): 391-398.
[3] Xinbo GAO, Xiumei WANG. Dimensionality reduction with latent variable model[J]. Front Elect Electr Eng, 2012, 7(1): 116-126.
[4] Hailong ZHU, Peng LIU, Jiafeng LIU, Xianglong TANG. A primary-secondary background model with sliding window PCA algorithm[J]. Front Elect Electr Eng Chin, 2011, 6(4): 528-534.
[5] Jing JIN, Chongsheng LIN, Qixing WANG, Hongwen YANG, Yafeng WANG. Power allocation for collaborative transmission in LTE-Advanced[J]. Front Elect Electr Eng Chin, 2011, 6(4): 515-520.
[6] Lianggui LIU, Weiqiang XU, Huiling JIA, Jie WU. A novel and effective multi-constrained QoS routing scheme in WMNs[J]. Front Elect Electr Eng Chin, 2011, 6(4): 507-514.
[7] Chen SONG, Xiaohong GUAN, Qianchuan ZHAO, Qing-Shan JIA. Remanufacturing planning based on constrained ordinal optimization[J]. Front Elect Electr Eng Chin, 2011, 6(3): 443-452.
[8] Wankou YANG, Changyin SUN, Zhenyu WANG. Finger-knuckle-print recognition using Gabor feature and MMDA[J]. Front Elect Electr Eng Chin, 2011, 6(2): 374-380.
[9] Zaihu PANG, Shikui TU, Dan SU, Xihong WU, Lei XU. Discriminative training of GMM-HMM acoustic model by RPCL learning[J]. Front Elect Electr Eng Chin, 2011, 6(2): 283-290.
[10] Jian YANG. Kernel feature extraction methods observed from the viewpoint of generating-kernels[J]. Front Elect Electr Eng Chin, 2011, 6(1): 43-55.
[11] Erkki OJA, Zhirong YANG. Orthogonal nonnegative learning for sparse feature extraction and approximate combinatorial optimization[J]. Front Elect Electr Eng Chin, 2010, 5(3): 261-273.
[12] Deqiang HAN, Chongzhao HAN, Yi YANG, . Modified center-based feature line classification approach[J]. Front. Electr. Electron. Eng., 2010, 5(2): 173-178.
[13] Yuhui HE, Yuning ZHAO, Chun FAN, Xiaoyan LIU, Ruqi HAN. Simulation of inhomogeneous strain in Ge-Si core-shell nanowires[J]. Front Elect Electr Eng Chin, 2009, 4(3): 342-347.
[14] Wei DONG, Jiandong LI, Zhuo LU, Linjing ZHAO. Parameter estimation for MIMO system based on MUSIC and ML methods[J]. Front Elect Electr Eng Chin, 2009, 4(2): 161-165.
[15] WANG Ying, GAO Xinbo. Mass detection algorithm based on support vector machine and relevance feedback[J]. Front. Electr. Electron. Eng., 2008, 3(3): 267-273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed