Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng    2012, Vol. 7 Issue (1) : 85-93    https://doi.org/10.1007/s11460-012-0184-0
REVIEW ARTICLE
Image understanding, attention and human early visual cortex
Fang FANG1,2,3(), Yizhou WANG4,2()
1. Department of Psychology, Peking University, Beijing 100871,China; 2. Key Laboratory of Machine Perception (Ministry of Education),Peking University, Beijing 100871, China; 3. Center for Life Sciences, Peking University, Beijing 100871, China; 4. National Engineering Lab for Video Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
 Download: PDF(575 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper reviews our recent fMRI and psychophysical finding on: 1) perceived size representation in V1; 2) border ownership representation in V2; and 3) neural processing of partially occluded face. These findings demonstrate that the human early visual cortex not only performs local feature analyses, but also contributes significantly to high-level visual computation with assistance of attention-enabled cortical feedback. Moreover, by taking advantage of recent findings on early visual cortex from neuroscience and cognitive science, we build a biologically plausible attention model that can well predict human scanpaths on natural images.

Keywords vision      attention      image understanding      early visual cortex     
Corresponding Author(s): FANG Fang,Email:ffang@pku.edu.cn; WANG Yizhou,Email:Yizhou.Wang@pku.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Fang FANG,Yizhou WANG. Image understanding, attention and human early visual cortex[J]. Front Elect Electr Eng, 2012, 7(1): 85-93.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-012-0184-0
https://academic.hep.com.cn/fee/EN/Y2012/V7/I1/85
1 Wandell B A, Dumoulin S O, Brewer A A. Visual field maps in human cortex. Neuron , 2007, 56(2): 366-383
doi: 10.1016/j.neuron.2007.10.012
2 Fang F, Boyaci H, Kersten D, Murray S O. Attentiondependent representation of a size illusion in human V1. Current Biology , 2008, 18(21): 1707-1712
doi: 10.1016/j.cub.2008.09.025
3 Wojciulik E, Kanwisher N, Driver J. Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. Journal of Neurophysiology , 1998, 79(3): 1574-1578
4 Murray S O, He S. Contrast invariance in the human lateral occipital complex depends on attention. Current Biology , 2006, 16(6): 606-611
doi: 10.1016/j.cub.2006.02.019
5 Nakayama K, Shimojo S, Silverman G H. Stereoscopic depth: Its relation to image segmentation, grouping, and the recognition of occluded objects. Perception , 1989, 18(1): 55-68
doi: 10.1068/p180055
6 Driver J, Baylis G C. Edge-assignment and figure-ground segmentation in short-term visual matching. Cognitive Psychology , 1996, 31(3): 248-306
doi: 10.1006/cogp.1996.0018
7 Lee T S, Mumford D, Romero R, Lamme V A F. The role of the primary visual cortex in higher level vision. Vision Research , 1998, 38(15-16): 2429-2454
doi: 10.1016/S0042-6989(97)00464-1
8 Zhou H, Friedman H S, von der Heydt R. Coding of border ownership in monkey visual cortex. Journal of Neuroscience , 2000, 20(17): 6594-6611
9 Qiu F T, von der Heydt R. Figure and ground in the visual cortex: V2 combines stereoscopic cues with Gestalt rules. Neuron , 2005, 47(1): 155-166
doi: 10.1016/j.neuron.2005.05.028
10 Kourtzi Z, Kanwisher N. Representation of perceived object shape by the human lateral occipital complex. Science , 2001, 293(5534): 1506-1509
doi: 10.1126/science.1061133
11 Andrews T J, Schluppeck D, Homfray D, Matthews P, Blakemore C. Activity in the fusiform gyrus predicts conscious perception of Rubin’s vase-face illusion. NeuroImage , 2002,17(2): 890-901
doi: 10.1006/nimg.2002.1243
12 Fang F, Murray S O, Kersten D J, He S. Orientation-tuned fMRI adaptation in human visual cortex. Journal of Neurophysiology , 2005, 94(6): 4188-4195
doi: 10.1152/jn.00378.2005
13 Fang F, Boyaci H, Kersten D. Border ownership selectivity in human early visual cortex and its modulation by attention. Journal of Neuroscience , 2009, 29(2): 460-465
doi: 10.1523/JNEUROSCI.4628-08.2009
14 Albright T D, Stoner G R. Contextual influences on visual processing. Annual Review of Neuroscience , 2002, 25(1): 339-379
doi: 10.1146/annurev.neuro.25.112701.142900
15 Grill-Spector K, Malach R. The human visual cortex. Annual Review of Neuroscienc e, 2004, 27(1): 649-677
doi: 10.1146/annurev.neuro.27.070203.144220
16 Kanwisher N. Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences of the United States of America , 2010, 107(25): 11163-11170
doi: 10.1073/pnas.1005062107
17 Stanley D A, Rubin N. fMRI activation in response to illusory contours and salient regions in the human lateral occipital complex. Neuron , 2003, 37(2): 323-331
doi: 10.1016/S0896-6273(02)01148-0
18 Hegde J, Fang F, Murray S O, Kersten D. Preferential responses to occluded objects in the human visual cortex. Journal of Vision , 2008, 8(4): 16-1-16-16
19 Grutzner C, Uhlhaas P J, Genc E, Kohler A, Singer W, Wibral M. Neuroelectromagnetic correlates of perceptual closure processes. Journal of Neuroscience , 2010, 30(24): 8342-8352
doi: 10.1523/JNEUROSCI.5434-09.2010
20 Sugita Y. Grouping of image fragments in primary visual cortex. Nature , 1999, 401(6750): 269-272
doi: 10.1038/45785
21 Pillow J, Rubin N. Perceptual completion across the vertical meridian and the role of early visual cortex. Neuron , 2002, 33(5): 805-813
doi: 10.1016/S0896-6273(02)00605-0
22 Bakin J S, Nakayama K, Gilbert C D. Visual responses in monkey areas V1 and V2 to three-dimensional surface configurations. Journal of Neuroscience , 2000, 20(21): 8188-8198
23 Lerner Y, Hendler T, Malach R. Object-completion effects in the human lateral occipital complex. Cerebral Cortex , 2002, 12(2): 163-177
doi: 10.1093/cercor/12.2.163
24 Murray R F, Sekuler A B, Bennett P J. Time course of amodal completion revealed by a shape discrimination task. Psychonomic Bulletin & Review , 2001, 8(4): 713-720
doi: 10.3758/BF03196208
25 Chen J, LiuB, Chen B, Fang F. Time course of amodal completion in face perception. Vision Research , 2009, 49(7): 752-758
doi: 10.1016/j.visres.2009.02.005
26 Bar M, Tootell R B, Schacter D, Greve D, Fischl B, Mendola J, Rosen B, Dale A. Cortical mechanisms specific to explicit visual object recognition. Neuron , 2001, 29(2): 529-535
doi: 10.1016/S0896-6273(01)00224-0
27 Lamme V A F, Zipser K, Spekreijse H. Masking interrupts figure-ground signals in V1. Journal of Cognitive Neuroscience , 2002, 14(7): 1044-1053
doi: 10.1162/089892902320474490
28 Chen J, Zhou T, Yang H, Fang F. Cortical dynamics underlying face completion in human visual system. Journal of Neuroscience , 2010, 30(49): 16692-16698
doi: 10.1523/JNEUROSCI.3578-10.2010
29 Fang F, He S. Viewer-centered object representation in the human visual system revealed by viewpoint aftereffect. Neuron , 2005, 45(5): 793-800
doi: 10.1016/j.neuron.2005.01.037
30 Wang W, Chen C,Wang Y, Jiang T, Fang F, Yao Y. Simulating human saccadic scanpath on natural images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 2011, 441-448
31 Olshausen B, Field D. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature , 1996, 381(6583): 607-609
doi: 10.1038/381607a0
32 Wang W, Wang Y, Huang Q, Gao W. Measuring visual saliency by site entropy rate. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 2010, 2368-2375
33 Itti L, Koch C, Niebur E. A model of saliency based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1998, 20(11): 1254-1259
doi: 10.1109/34.730558
34 Yao J G, Gao X, Yan H M, Li C Y. Field of attention for instantaneous object recognition. PLoS ONE , 2011, 6(1): e16343
doi: 10.1371/journal.pone.0016343
35 Hou X, Zhang L. Dynamic visual attention: Searching for coding length increments. Advances in Neural Information Processing Systems , 2008, 21: 681-688
36 Sauer T, Yorke J, Casdagli M. Embedology. Journal of Statistical Physics , 1991, 65(3-4): 579-616
doi: 10.1007/BF01053745
37 Bruce N, Tsotsos J. Saliency based on information maximization. Advances in Neural Information Processing Systems , 2006, 18: 155-162
[1] Arto KAARNA, Wei LIU, Heikki K?LVI?INEN. Development of color density concept with color difference formulas in respect to human vision system[J]. Front Elect Electr Eng Chin, 2011, 6(2): 381-387.
[2] Alexander DROBCHENKO, Joni-Kristian KAMARAINEN, Lasse LENSU, Jarkko VARTIAINEN, Heikki K?LVI?INEN, Tuomas EEROLA. Thresholding-based detection of fine and sparse details[J]. Front Elect Electr Eng Chin, 2011, 6(2): 328-338.
[3] Dewen HU, Zongtan ZHOU, Zhengzhi WANG. Processing real-world imagery with FACADE-based approaches[J]. Front Elect Electr Eng Chin, 2011, 6(1): 120-136.
[4] Huanjun LIU. Empty glass bottle inspection method based on fuzzy support vector machine neural network and machine vision[J]. Front Elect Electr Eng Chin, 2010, 5(4): 430-440.
[5] Alan YUILLE, . An information theory perspective on computational vision[J]. Front. Electr. Electron. Eng., 2010, 5(3): 329-346.
[6] Zhenrong ZHANG, Lixin ZHU, Zhengbin LI, Anshi XU, . Shared-p-cycles method for design of survivable WDM networks[J]. Front. Electr. Electron. Eng., 2009, 4(4): 362-370.
[7] Zhiwei LI, Chunyan FENG, Tiankui ZHANG, Jieying ZHENG. Power allocation scheme for multicell interference coordination in OFDMA systems[J]. Front Elect Electr Eng Chin, 2009, 4(1): 31-34.
[8] MA Qinghua, YANG Luxi, HE Zhenya. Diversity analysis of space-time-frequency coded broadband MIMO-OFDM system with correlation across space time and frequency[J]. Front. Electr. Electron. Eng., 2008, 3(3): 295-300.
[9] ZHANG Yanyan, TAO Xiaofeng, ZHU Xiaoxuan, ZHANG Ping, TANG Lisha. A PO-CI/MC-CDMA scheme for high modulation styles[J]. Front. Electr. Electron. Eng., 2008, 3(2): 145-149.
[10] HE Feng, WU Lenan. Positioning models and systems based on digital television broadcasting signals[J]. Front. Electr. Electron. Eng., 2007, 2(4): 410-414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed