Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2024, Vol. 11 Issue (2) : 207-230    https://doi.org/10.1007/s42524-023-0283-z
Urban Management: Developing Sustainable, Resilient, and Equitable Cities Co-edited by Wei-Qiang CHEN, Hua CAI, Benjamin GOLDSTEIN, Oliver HEIDRICH and Yu LIU
Will fuel switching ever happened in China’s thermal power sector? The rule of carbon market design
Anqi HE1(), Huarong PENG2
1. Wuhan University Institute for International Studies, Wuhan University, Wuhan 430072, China; Climate Change and Energy Economics Study Center, Economics and Management School, Wuhan University, Wuhan 430000, China
2. Collaborative Innovation Center for Emissions Trading System by Ministry of Education and Hubei Provincial Government, Hubei University of Economics, Wuhan 430200, China
 Download: PDF(7769 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To assess the effectiveness of China’s emissions trading scheme (ETS) in facilitating energy structure optimization, we constructed a fuel-switching model utilizing data from 1067 generating units under the Chinese ETS framework. The model simulates the fuel-switching price in China’s thermal power sector, taking into account various allowance allocation strategies. The results show the following: 1) Thermal power plants will transition from coal to gas if the current ETS auction rate surpasses 26%. 2) Furthermore, in scenarios where the ETS operates independently, a transition will occur if the carbon allowance market is entirely auction-based and the carbon price attains 119.50 USD/tCO2. 3) In a collaborative scenario involving both the ETS and a gas feed-in tariff subsidy, a carbon price of 9.39 USD/tCO2 will effect a transition from coal to gas, provided both the auction ratio and subsidy price are maximized.

Keywords ETS      thermal power plant      fuel switching      allowance allocation method      feed-in tariff subsidy     
Corresponding Author(s): Anqi HE   
Just Accepted Date: 06 February 2024   Online First Date: 15 April 2024    Issue Date: 26 June 2024
 Cite this article:   
Anqi HE,Huarong PENG. Will fuel switching ever happened in China’s thermal power sector? The rule of carbon market design[J]. Front. Eng, 2024, 11(2): 207-230.
 URL:  
https://academic.hep.com.cn/fem/EN/10.1007/s42524-023-0283-z
https://academic.hep.com.cn/fem/EN/Y2024/V11/I2/207
Fig.1  Historical behavior of monthly changes in coal prices from December 2013 to December 2022 (prices are deflated and expressed in USD/GJ).
Fig.2  Historical behavior of monthly changes in gas prices from December 2013 to December 2022 (prices are deflated and expressed in USD/GJ).
Parameter Fitting result
Coal πcoal 0.0543
σcoal 0.0063
Gas πgas −0.0033
σgas 0.0980
λJ 0.0769
μJ −0.0026
σJ 0.0275
Tab.1  Dynamic parameters of coal prices and gas prices
Allowance allocation method Definition
Allowance Allocation Method 2021 (AAM2021) The benchmark in 2021 of the “Discussion Draft”
Allowance Allocation Method 2022 (AAM2022) The benchmark in 2022 of the “Discussion Draft”
Benchmark-Based Method 1(BBM 1) All types of coal-fired units and gas-fired units set their Benchmarks at the 20th quantile of the same type of unit’s carbon emission intensity level, and the government allocates initial allowance to the generating units covered by ETS based on these Benchmarks
Benchmark-Based Method 2(BBM 2) All types of coal-fired units and gas-fired units set their Benchmarks at the 10th quantile of the same type of unit’s carbon emission intensity level, and the government allocates initial allowance to the generating units covered by ETS based on these Benchmarks
Benchmark-Based Method 3(BBM 3) Different types of coal-fired units set their Benchmarks at the 10th quantile of the same type of coal-fired unit’s carbon emission intensity level; Different types of gas-fired units set their Benchmarks at the 20th quantile of the same type of gas-fired unit’s carbon emission intensity level; in addition, the government allocates initial allowance to the generating units covered by ETS based on these Benchmarks
Tab.2  Scenario descriptions of different allowance allocation methods in the ETS
Generating unit type Minimum coal consumption for power generation (t/MWh) Maximum coal consumption for power generation (t/MWh) Average coal consumption for power generation (t/MWh) Average carbon intensity (tCO2/MWh) Average operating hours (h) Average generating capacity (MWh) Average load (MWe)
Conventional coal-fired generating units above 300 MW 1000 MW ultrasupercritical units 0.2642 0.2999 0.2834 0.7858 7194.58 5366106.70 721.74
600 MW ultrasupercritical units 0.2713 0.3060 0.2884 0.7996 7195.95 3287637.01 456.79
600 MW supercritical units 0.2827 0.3967 0.3055 0.8471 6921.95 3013017.95 434.78
600 MW subcritical units 0.2955 0.3485 0.3188 0.8838 6975.05 3006527.40 430.46
Conventional coal-fired generating units of 300 MW and below 300 MW supercritical units 0.2269 0.3298 0.2906 0.8056 7296.87 1730283.91 237.41
300 MW subcritical units 0.2214 0.3546 0.3085 0.8553 6958.34 1562039.15 224.40
Below 300 MW ultrahigh pressure/high pressure units 0.2599 0.3770 0.3273 0.9075 6424.62 844589.03 132.11
Unconventional coal-fired generating units Above 300 MW circulating fluidized bed IGCC units 0.2860 0.3635 0.3317 0.9195 6365.86 1403931.21 220.84
Below 300 MW circulating fluidized bed IGCC units 0.1837 0.3774 0.3326 0.9221 6551.10 718839.96 109.19
Tab.3  Basic statistics of different types of coal-fired generating units
Generating unit type Coal consumption for power generation (t/MWh) Carbon intensity (tCO2/MWh) Allowance allocation standard (tCO2/MWh)
AAM2021 AAM2022 BBM 2 BBM 1
Conventional coal-fired generating units above 300 MW 1000 MW ultrasupercritical units 0.2834 0.7858 0.8218 0.8159 0.7787 0.7939
600 MW ultrasupercritical units 0.2884 0.7996
600 MW supercritical units 0.3055 0.8471
600 MW subcritical units 0.3188 0.8838
Conventional coal-fired generating units of 300 MW and below 300 MW supercritical units 0.2906 0.8056 0.8773 0.8729 0.7644 0.8034
300 MW subcritical units 0.3085 0.8553
Below 300 MW ultrahigh pressure/high pressure units 0.3273 0.9075
Unconventional coal-fired generating units Above 300 MW circulating fluidized bed IGCC units 0.3317 0.9195 0.9350 0.9303 0.8145 0.8648
Below 300 MW circulating fluidized bed IGCC units 0.3326 0.9221
Average 0.3064 0.8494 0.8580 0.8540 0.7744 0.8081
Tab.4  Coal consumption, carbon intensity, and benchmark values of different types of coal-fired generating units
Generating unit type Coal consumption for power generation (t/MWh) Carbon intensity (tCO2/MWh) Allowance allocation standard (tCO2/MWh)
AAM2021 AAM2022 BBM 2 BBM 1
Gas units above class F 0.2072 0.4095 0.3920 0.3901 0.3604 0.3755
Gas units below class F 0.1932 0.3818
Average 1.9980 0.3930
Tab.5  Coal consumption, carbon intensity, and benchmark values of different types of gas-fired generating units
Coal units Auction ratio
Free allocation 10% 16% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1000 MW ultrasupercritical units 10924.11 1868.88 1203.70 636.94 433.04 328.03 264.01 220.90 189.89 166.52 148.27
600 MW ultrasupercritical units 2989.95 1275.30 922.59 545.44 387.17 300.09 244.99 206.99 179.19 157.98 141.25
600 MW supercritical units 2286.01 816.92 589.59 497.32 357.47 279.01 228.79 193.90 168.23 148.57 133.02 120.42
600 MW subcritical units 864.56 506.35 405.54 358.02 276.90 225.75 190.55 164.85 145.25 129.82 117.36 107.07
300 MW supercritical units 21435.24 2573.01 804.09 476.50 338.57 262.56 214.43 181.20 156.90 138.34
300 MW subcritical units 2321.70 1030.28 751.58 448.36 319.47 248.14 202.85 171.54 148.60 131.07 117.25
Below 300 MW ultrahigh pressure/high pressure units 1894.55 675.64 487.46 411.13 295.46 230.58 189.07 160.22 139.01 122.76 109.91 99.50
Above 300 MW circulating fluidized bed IGCC units 1416.01 738.37 559.78 348.84 253.37 198.93 163.74 139.13 120.95 106.98 95.90
Below 300 MW circulating fluidized bed IGCC units 1315.65 709.20 542.49 341.69 249.38 196.34 161.91 137.75 119.86 106.09 95.15
Tab.6  Fuel switching prices of different types of generating units under the AAM2021 (USD/tCO2)
Fig.3  Comparison of fuel switching price trends for different types of units with different auction ratios in AAM2021.
Coal units Auction ratio
Free allocation 10% 16% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1000 MW ultrasupercritical units 7952.99 1763.67 1161.21 626.33 428.81 326.00 262.96 220.34 189.62 166.41 148.27
600 MW ultrasupercritical units 2709.11 1224.76 897.08 537.54 383.74 298.37 244.07 206.49 178.94 157.88 141.25
600 MW supercritical units 2092.58 793.34 578.01 489.45 353.89 277.13 227.74 193.29 167.89 148.39 132.95 120.42
600 MW subcritical units 834.23 496.83 399.81 353.75 274.66 224.47 189.79 164.39 144.99 129.68 117.30 107.07
300 MW supercritical units 11954.61 2359.12 784.64 470.57 336.06 261.35 213.82 180.92 156.79 138.34
300 MW subcritical units 2116.68 990.54 731.20 441.93 316.66 246.72 202.09 171.13 148.40 130.99 117.25
Below 300 MW ultrahigh pressure/high pressure units 1733.45 656.07 477.87 404.60 292.49 229.03 188.20 159.72 138.73 122.61 109.85 99.50
Above 300 MW circulating fluidized bed IGCC units 1322.16 713.72 546.16 344.16 251.24 197.83 163.15 138.81 120.79 106.91 95.90
Below 300 MW circulating fluidized bed IGCC units 1234.03 686.36 529.65 337.19 247.32 195.27 161.32 137.43 119.70 106.02 95.15
Tab.7  Fuel switching prices of different types of units under AAM2022 (USD/tCO2)
Fig.4  Comparison of fuel switching price trends for different types of units with different auction ratios in AAM2022.
Coal units Auction ratio
Free allocation 7% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1000 MW ultrasupercritical units 41713.11 4153.36 1037.97 593.09 415.16 319.35 259.47 218.50 188.70 166.06 148.27
600 MW ultrasupercritical units 3760.07 2058.69 820.75 512.55 372.62 292.71 241.02 204.85 178.12 157.56 141.25
600 MW supercritical units 1628.95 867.90 723.11 464.70 342.35 271.00 224.27 191.28 166.75 147.80 132.71 120.42
600 MW subcritical units 746.16 526.28 467.27 340.14 267.39 220.27 187.28 162.88 144.10 129.21 117.11 107.07
300 MW supercritical units 4594.88 2253.30 834.96 512.42 369.63 289.08 237.35 201.33 174.80 154.45 138.34
300 MW subcritical units 1680.16 869.15 720.16 458.30 336.09 265.34 219.20 186.72 162.63 144.04 129.27 117.25
Below 300 MW ultrahigh pressure/high pressure units 604.55 446.06 401.00 300.00 239.64 199.50 170.88 149.44 132.78 119.46 108.57 99.50
Above 300 MW circulating fluidized bed IGCC units 1440.36 726.94 599.65 378.64 276.67 217.97 179.82 153.03 133.19 117.91 105.77 95.90
Below 300 MW circulating fluidized bed IGCC units 1336.70 698.61 579.96 370.32 272.00 214.93 177.66 151.40 131.91 116.86 104.90 95.15
Tab.8  Fuel switching prices of different types of units under BBM 1 (USD/tCO2)
Fig.5  Comparison of fuel switching price trends for different types of units with different auction ratios in BBM 1.
Coal units Auction ratio
Free allocation 7% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1000 MW ultrasupercritical units 39093.72 4126.71 1036.48 592.67 414.98 319.26 259.42 218.47 188.69 166.05 148.27
600 MW ultrasupercritical units 3737.19 2052.03 819.81 512.23 372.48 292.64 240.98 204.83 178.11 157.55 141.25
600 MW supercritical units 1624.09 866.61 722.25 464.38 342.20 270.92 224.22 191.25 166.73 147.79 132.71 120.42
600 MW subcritical units 745.10 525.79 466.89 339.96 267.29 220.22 187.24 162.86 144.09 129.20 117.10 107.07
300 MW supercritical units 9009.60 1641.43 1215.43 651.67 445.18 338.06 272.49 228.23 196.34 172.26 153.45 138.34
300 MW subcritical units 963.09 639.93 559.47 394.25 304.36 247.85 209.04 180.74 159.19 142.23 128.53 117.25
Below 300 MW ultrahigh pressure/high pressure units 471.01 373.41 342.96 269.65 222.16 188.89 164.29 145.36 130.34 118.14 108.02 99.50
Above 300 MW circulating fluidized bed IGCC units 717.10 493.37 435.19 312.38 243.63 199.68 169.17 146.74 129.57 115.99 104.99 95.90
Below 300 MW circulating fluidized bed IGCC units 689.50 479.74 424.40 306.55 239.92 197.08 167.23 145.23 128.34 114.97 104.13 95.15
Tab.9  Fuel switching prices of different types of units under BBM 2 (USD/tCO2)
Fig.6  Comparison of fuel switching price trends for different types of units with different auction ratios in BBM 2.
Coal units Auction ratio
Free allocation 4% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1000 MW ultrasupercritical units 16889.67 2096.23 852.19 534.80 389.67 306.50 252.59 214.80 186.85 165.34 148.27
600 MW ultrasupercritical units 51916.38 3314.84 1378.75 698.65 467.87 351.69 281.74 234.99 201.55 176.44 156.90 141.25
600 MW supercritical units 1119.48 840.55 611.86 420.98 320.87 259.23 217.45 187.27 164.45 146.59 132.22 120.42
600 MW subcritical units 613.20 515.70 416.38 315.21 253.59 212.13 182.31 159.85 142.31 128.25 116.71 107.07
300 MW supercritical units 2652.36 1535.89 941.46 572.30 411.10 320.75 262.96 222.82 193.31 170.70 152.82 138.34
300 MW subcritical units 758.55 622.38 490.35 362.26 287.23 237.95 203.10 177.16 157.09 141.10 128.07 117.25
Below 300 MW ultrahigh pressure/high pressure units 413.33 367.02 314.22 253.45 212.37 182.76 160.39 142.90 128.85 117.31 107.67 99.50
Above 300 MW circulating fluidized bed IGCC units 590.01 489.18 389.38 290.57 231.76 192.75 164.98 144.20 128.07 115.19 104.66 95.90
Below 300 MW circulating fluidized bed IGCC units 570.91 475.76 380.61 285.46 228.37 190.30 163.12 142.73 126.87 114.18 103.80 95.15
Tab.10  Fuel switching prices of different types of units under BBM 3 (USD/tCO2)
Fig.7  Comparison of fuel switching price trends for different types of units with different auction ratios in BBM 3.
Allowance method Auction ratio
0% 3% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
AAM2021 26088.84 1563.83 667.46 424.28 310.97 245.43 202.71 172.65 150.36 133.17 119.50
AAM2022 13180.66 1483.05 653.95 419.45 308.74 244.27 202.07 172.31 150.18 133.10 119.50
BBM 1 2523.94 1573.90 837.94 502.36 358.70 278.94 228.20 193.07 167.32 147.63 132.08 119.50
BBM 2 1353.24 1033.22 665.83 441.54 330.28 263.81 219.61 188.09 164.49 146.15 131.49 119.50
BBM 3 972.49 807.91 567.45 400.60 309.57 252.25 212.84 184.09 162.17 144.92 130.99 119.50
Tab.11  Comparison of fuel switching prices under different allowance allocation methods
Fig.8  Comparison of fuel switching price trends under different allowance allocation methods.
Coal units Feed-in tariff (USD/kWh)
0 0.1 0.2 0.3 0.4 0.5
1000 MW ultrasupercritical units 148.27 122.66 97.05 71.44 45.83 20.22
600 MW ultrasupercritical units 141.25 116.52 91.78 67.05 42.32 17.58
600 MW supercritical units 120.42 98.29 76.16 54.02 31.89 9.75
600 MW subcritical units 107.07 86.60 66.13 45.66 25.19 4.72
300 MW supercritical units 138.34 113.97 89.59 65.22 40.85 16.48
300 MW subcritical units 117.25 95.51 73.77 52.03 30.29 8.55
Below 300 MW ultrahigh pressure/high pressure units 99.50 79.98 60.45 40.93 21.40 1.88
Above 300 MW circulating fluidized bed IGCC units 95.90 76.82 57.74 38.67 19.59 0.51
Below 300 MW circulating fluidized bed IGCC units 95.15 76.17 57.19 38.20 19.22 0.24
Average 119.50 97.48 75.46 53.43 31.41 9.39
Tab.12  Fuel switching prices of different types of units corresponding to different gas feed-in tariff subsidies under the complete auction (USD/tCO2)
Fig.9  Fuel switching price trends of different types of units corresponding to different gas feed-in tariff subsidies under the complete auction (USD/tCO2).
Auction ratio Feed-in tariff (USD/kWh)
0 0.1 0.2 0.3 0.4 0.5
0 972.49 793.28 614.06 434.85 255.64 76.43
10% 567.45 462.88 358.31 253.74 149.17 44.60
20% 400.60 326.77 252.95 179.13 105.31 31.48
30% 309.57 252.52 195.47 138.43 81.38 24.33
40% 252.25 205.77 159.28 112.80 66.31 19.83
50% 212.84 173.62 134.40 95.17 55.95 16.73
60% 184.09 150.16 116.24 82.31 48.39 14.47
70% 162.17 132.29 102.40 72.52 42.63 12.75
80% 144.92 118.22 91.51 64.80 38.10 11.39
90% 130.99 106.85 82.71 58.57 34.43 10.29
100% 119.50 97.48 75.46 53.43 31.41 9.39
Tab.13  Fuel switching prices under the synergy of ETS and gas feed-in tariff subsidy
Fig.10  Fuel switching price trends under the synergy of ETS and gas feed-in tariff subsidies.
1 L M AbadieJ M ChamorroM González (2010). Optimal investment in energy efficiency under uncertainty. Working Papers
2 N S Alhajeri, M Dannoun, A Alrashed, A Z Aly, (2019). Environmental and economic impacts of increased utilization of natural gas in the electric power generation sector: Evaluating the benefits and trade-offs of fuel switching. Journal of Natural Gas Science and Engineering, 71: 102969
https://doi.org/10.1016/j.jngse.2019.102969
3 A M Bersani, P Falbo, L Mastroeni, (2022). Is the ETS an effective environmental policy? Undesired interaction between energy-mix, fuel-switch and electricity prices. Energy Economics, 110: 105981
https://doi.org/10.1016/j.eneco.2022.105981
4 V Bertrand, (2014). Carbon and energy prices under uncertainty: A theoretical analysis of fuel switching with heterogeneous power plants. Resource and Energy Economics, 38: 198–220
https://doi.org/10.1016/j.reseneeco.2014.08.001
5 BP (2021). Statistical review of world energy 2021. Online Report
6 P A Brehm, (2019). Natural gas prices, electric generation investment, and greenhouse gas emissions. Resource and Energy Economics, 58: 101106
https://doi.org/10.1016/j.reseneeco.2019.06.003
7 P A Brehm, Y Zhang, (2021). The efficiency and environmental impacts of market organization: Evidence from the Texas electricity market. Energy Economics, 101: 105359
https://doi.org/10.1016/j.eneco.2021.105359
8 R Carmona, M Fehr, J Hinz, (2009). Optimal stochastic control and carbon price formation. SIAM Journal on Control and Optimization, 48( 4): 2168–2190
https://doi.org/10.1137/080736910
9 H Chen, H P Geng, H T Ling, S Peng, N Li, S Yu, Y M Wei, (2020). Modeling the coal-to-gas switch potentials in the power sector: A case study of China. Energy, 192: 116629
https://doi.org/10.1016/j.energy.2019.116629
10 X G Chen, (2019). “Electricity” and “carbon” market coupling, promoting low-carbon development in the power industry. Energy Conservation and Environmental Protection, ( 5): 16–17 (in Chinese)
11 J Chevallier (2012). Econometric Analysis of Carbon Markets: The European Union Emissions Trading Scheme and the Clean Development Mechanism. Dordrecht: Springer
12 R ContP Tankov (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series. London: CRC Press
13 E Delarue, H Lamberts, W D’haeseleer, (2007). Simulating greenhouse gas (GHG) allowance cost and GHG emission reduction in Western Europe. Energy, 32( 8): 1299–1309
https://doi.org/10.1016/j.energy.2006.09.020
14 E D Delarue, W D D’haeseleer, (2007). Price determination of ETS allowances through the switching level of coal and gas in the power sector. International Journal of Energy Research, 31( 11): 1001–1015
https://doi.org/10.1002/er.1292
15 E D Delarue, A D Ellerman, W D D’haeseleer, (2010). Robust MACCs? The topography of abatement by fuel switching in the European power sector. Energy, 35( 3): 1465–1475
https://doi.org/10.1016/j.energy.2009.12.003
16 D de Vos, (2015). Negative wholesale electricity prices in the German, French and Belgian day-ahead, intra-day and real-time markets. Electricity Journal, 28( 4): 36–50
https://doi.org/10.1016/j.tej.2015.04.001
17 R S Elias, M Wahab, L Fang, (2016). The spark spread and clean spark spread option based valuation of a power plant with multiple turbines. Energy Economics, 59: 314–327
https://doi.org/10.1016/j.eneco.2016.08.003
18 Energy News Network (2018). The past and present of “benchmark electricity price” (in Chinese)
19 M Fan, G He, M Zhou, (2020). The winter choke: Coal-fired heating, air pollution, and mortality in China. Journal of Health Economics, 71: 102316
https://doi.org/10.1016/j.jhealeco.2020.102316
20 W Fang, (2015). Application of the technology of transforming coal-fired boiler into gas-fired boiler. Zhejiang Metallurgy, ( 2): 4 (in Chinese)
21 X Gao, (2016). Study on industrial development of renewable energies in China. Journal of Hunan University of Finance and Economics, 32( 3): 99–105 (in Chinese)
22 C García-Martos, J Rodriguez, M J Sanchez, (2013). Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities. Applied Energy, 101: 363–375
https://doi.org/10.1016/j.apenergy.2012.03.046
23 Y Han, B Shen, T Zhang, (2017). A techno-economic assessment of fuel switching options of addressing environmental challenges of coal-fired industrial boilers: An analytical work for China. Energy Procedia, 142: 3083–3087
https://doi.org/10.1016/j.egypro.2017.12.448
24 B Hintermann, (2010). Allowance price drivers in the first phase of the EU ETS. Journal of Environmental Economics and Management, 59( 1): 43–56
https://doi.org/10.1016/j.jeem.2009.07.002
25 M T Hogue (2012). A review of the costs of nuclear power generation. Online Article
26 Q Hu, (2023). Research on the correlation between carbon emission permit price and traditional energy price. Market Weekly, 36( 2): 14–18 (in Chinese)
27 International Energy Agency (IEA) (2022). Coal 2022: Analysis and forecast to 2025. Online Report
28 R Ishfaq, U Raja, M Clark, (2016). Fuel-switch decisions in the electric power industry under environmental regulations. IIE Transactions, 48( 3): 205–219
https://doi.org/10.1080/0740817X.2015.1056391
29 H Jin, Z S Ding, K Gao, (2018). Coal price fluctuation characteristics based on jump diffusion process. Technology and Innovation Management, 39( 5): 584–587, 624 (in Chinese)
30 Y Y Ji, (2022). Research on low-carbon agriculture under the “Double Carbon” goal. Shanghai Rural Economy, 7: 43–45 (in Chinese)
31 F Kahrl, J Hu, G Kwok, J H Williams, (2013). Strategies for expanding natural gas-fired electricity generation in China: Economics and policy. Energy Strategy Reviews, 2( 2): 182–189
https://doi.org/10.1016/j.esr.2013.04.006
32 M Li, Y Kong, (2023). Prediction of natural gas price based on time series model. Petroleum and New Energy, 35( 1): 61–66 (in Chinese)
33 Q Li, R Huang, B Ju, (2012). Research on the relationship between China’s energy consumption structure and energy conservation and emission reduction. Chinese and Foreign Entrepreneurs, 17: 17–20 (in Chinese)
34 Z H Li, J L Wang, L Y Feng, (2021). Opportunities for China in the game of “Carbon Neutrality”. Energy, 3: 33–36 (in Chinese)
35 Q D Liang, X Z Feng, X L Du, M X Zhao, M Wang, (2020). Study on the influencing factors of carbon emissions from energy consumption based on LMDI method: Taking Tangshan City as an example. Environment and Sustainable Development, 45( 1): 150–154 (in Chinese)
36 C LucheroniC Mari (2014). Stochastic LCOE for optimal electricity generation portfolio selection. In: 11th International Conference on the European Energy Market. Krakow: IEEE, 1–8
37 C Lucheroni, C Mari, (2017). CO2 volatility impact on energy portfolio choice: A fully stochastic LCOE theory analysis. Applied Energy, 190: 278–290
https://doi.org/10.1016/j.apenergy.2016.12.125
38 C Lucheroni, C Mari, (2018). Risk shaping of optimal electricity portfolios in the stochastic LCOE theory. Computers & Operations Research, 96: 374–385
https://doi.org/10.1016/j.cor.2018.02.011
39 R Lueken, K Klima, W M Griffin, J Apt, (2016). The climate and health effects of a USA switch from coal to gas electricity generation. Energy, 109: 1160–1166
https://doi.org/10.1016/j.energy.2016.03.078
40 X H Ma, G S Zhang, H J Tang, Y B Liang, (2022). The status and role of natural gas in the construction of clean and low-carbon energy system. Petroleum Science and Technology Forum, 41( 1): 18–28 (in Chinese)
41 K Matsuda (2004). Introduction to Merton jump diffusion model. Deparfment of Economics, The Graduate Center, The City Oniversity of New York
42 J Mo, L Cui, H Duan, (2021a). Quantifying the implied risk for newly-built coal plant to become stranded asset by carbon pricing. Energy Economics, 99: 105286
https://doi.org/10.1016/j.eneco.2021.105286
43 J Mo, Q Tu, J Wang, (2023). Carbon pricing and enterprise productivity: The role of price stabilization mechanism. Energy Economics, 120: 106631
https://doi.org/10.1016/j.eneco.2023.106631
44 J Mo, W Zhang, Q Tu, J Yuan, H Duan, Y Fan, J Pan, J Zhang, Z Meng, (2021b). The role of national carbon pricing in phasing out China’s coal power. iScience, 24( 6): 102655
https://doi.org/10.1016/j.isci.2021.102655
45 B C Murray, P T Maniloff, (2015). Why have greenhouse emissions in RGGI states declined? An econometric attribution to economic, energy market, and policy factors. Energy Economics, 51: 581–589
https://doi.org/10.1016/j.eneco.2015.07.013
46 National Development and Reform Commission (NDRC) (2017). Energy Production and Consumption Revolution Strategy (2016–2030)
47 National Development and Reform Commission (NDRC) (2019). Guideline of the National Development and Reform Commission on Deepening the Reform of the Feed-in Tariff Formation Mechanism for Coal-Fired Power Generation
48 National Energy Information Platform (2022). Academician Xiangwan DU: Strategic focus on carbon peaking and carbon neutrality
49 S Z Qi, A Q He, J H Zhang, (2020). The effective benchmark selection model and simulation in the power sector of China’s ETS. Climate Change Economics, 11( 3): 2041006
https://doi.org/10.1142/S2010007820410067
50 V Z Rad, S A Torabi, G H Shakouri, (2019). Joint electricity generation and transmission expansion planning under integrated gas and power system. Energy, 167: 523–537
https://doi.org/10.1016/j.energy.2018.10.178
51 T Shan, (2021). Positioning and development path suggestions of natural gas power generation in China’s energy transition period. China Offshore Oil and Gas, 33( 2): 205–214 (in Chinese)
52 J P M SijmS J A BakkerY ChenH W HarmsenW Lise (2006). CO2 price dynamics: The implications of EU emissions trading for the price of electricity. In: IEEE Power Engineering Society General Meeting. Montreal, QC: IEEE, 4
53 State Grid Energy Research Institute (2020). China Energy and Electricity Outlook 2020 (in Chinese)
54 L Su, (2014). Study on technical feasibility of transforming coal-fired boiler into gas-fired boiler. Architectural Engineering Technology and Design, ( 2): 253, 267 (in Chinese)
55 C Sun, Z Liu, (2003). Analysis on the feasibility and energy-saving effect of transforming coal-fired boiler to gas-fired boiler. Applied Energy Technology, ( 4): 14–15 (in Chinese)
56 R Sun, L Xie, (2020). Research on the relationship between crude oil, natural gas, and coal prices. Prices Monthly, 518( 7): 16–24 (in Chinese)
57 H J Tang, J L Huang, S Q Pan, Q Tang, Y L Wang, (2020). Suggestions on assessment and development of China’s proven but undeveloped natural gas reserves. Petroleum Science and Technology Forum, 39( 6): 37–44 (in Chinese)
58 H WangP Wang (2019). The merger of two swords: Carbon market and electricity market coupled to promote low-carbon development in the power industry. Online Article (in Chinese)
59 W Wang, B Zhu, J Yang, (2016). Contribution of natural gas generation on carbon emission reduction. Gas Turbine Technology, 29( 1): 9–11 (in Chinese)
60 J P Wood, F Jotzo, (2011). Price floors for emissions trading. Energy Policy, 39( 3): 1746–1753
https://doi.org/10.1016/j.enpol.2011.01.004
61 D Wu, (2022). Cost comparison and technology: Research of boiler coal to gas. Technology Innovation and Application, 12( 28): 68–71 (in Chinese)
62 J H Wu, Y H Huang, (2014). Electricity portfolio planning model incorporating renewable energy characteristics. Applied Energy, 119: 278–287
https://doi.org/10.1016/j.apenergy.2014.01.001
63 B Xiao, D Niu, X Guo, (2016). Can natural gas-fired power generation break through the dilemma in China? A system dynamics analysis. Journal of Cleaner Production, 137: 1191–1204
https://doi.org/10.1016/j.jclepro.2016.07.198
64 B XuY Zhang H J TangH Jin (2021). Prospect of China’s Natural Gas Industrial Development in the 14th Five-Year Plan Period. Beijing: China Financial Publishing House (in Chinese)
65 Y Xun, (2019). Technical analysis of transforming a coal-fired boiler into a gas-fired boiler. China Plant Engineering, 427( 15): 81–82 (in Chinese)
66 G Yang, Z Xu, F Shen, (2018). Analysis and prospect of carbon emission reduction in the power generation sector and participation in ETS. Environment Protection, 46( 15): 22–26 (in Chinese)
67 H Yang, (2010). Analysis of carbon emission reduction potential of Chinese power companies. Science and Technology Information, ( 6): 157 (in Chinese)
68 B W Yi, J H Xu, Y Fan, (2016). Inter-regional power grid planning up to 2030 in China considering renewable energy development and regional pollutant control: A multi-region bottom-up optimization model. Applied Energy, 184: 641–658
https://doi.org/10.1016/j.apenergy.2016.11.021
69 D Zhang, P Liu, L Ma, Z Li, W Ni, (2012). A multi-period modelling and optimization approach to the planning of China’s power sector with consideration of carbon dioxide mitigation. Computers & Chemical Engineering, 37: 227–247
https://doi.org/10.1016/j.compchemeng.2011.09.001
70 S (2019) Zhang. Engineering characteristics and operation analysis of 1000 MW secondary reheat ultra-supercritical unit. Electric Power Engineering Technology, 38(2): 159–162, 168 (in Chinese)
71 X Zhang, J Dong, (2018). Study on the feasibility of transforming coal fired boiler into gas fired boiler. Plant Maintenance Engineering, 425( 11): 134–135 (in Chinese)
72 X Zhang, Y Zhang, Z Li, (2017). R&D of key technologies for a high-efficient wide-load-range ultra-supercritical unit and the engineering schemes. Journal of Chinese Society of Power Engineering, 37( 3): 173–178 (in Chinese)
73 S Zhou, J Wang, Y Liang, (2021). Development of China’s natural gas industry during the 14th Five-Year Plan in the background of carbon neutrality. Natural Gas Industry, 41( 2): 171–182 (in Chinese)
74 W Zhuang, Y Wang, L Kang, P X Zhu, Q Hu, (2021). Analysis of automatic feedwater control for millions of ultra-supercritical units. Advanced Power and Energy Technologies, ( 12): 22–24 (in Chinese)
[1] Minfang HUANG, Yuanyuan HAO, Yanxin WANG, Xiangpei HU, Ludi LI. Split-order consolidation optimization for online supermarkets: Process analysis and optimization models[J]. Front. Eng, 2023, 10(3): 499-516.
[2] Jianxia GONG, Lindu ZHAO. Blockchain application in healthcare service mode based on Health Data Bank[J]. Front. Eng, 2020, 7(4): 605-614.
[3] Huchang LIAO, Yinghan CHANG, Di WU, Xunjie GOU. Improved approach to quality function deployment based on Pythagorean fuzzy sets and application to assembly robot design evaluation[J]. Front. Eng, 2020, 7(2): 196-203.
[4] Andrew LOCKLEY, Zhifu MI, D’Maris COFFMAN. Geoengineering and the blockchain: Coordinating Carbon Dioxide Removal and Solar Radiation Management to tackle future emissions[J]. Front. Eng, 2019, 6(1): 38-51.
[5] Michael G. POLLITT. A global carbon market?[J]. Front. Eng, 2019, 6(1): 5-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed