Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2016, Vol. 3 Issue (4) : 362-376    https://doi.org/10.15302/J-FEM-2016049
ENGINEERING MANAGEMENT REPORTS
NICE’s Indirect Coal-to-Liquid Process for Producing Clean Transportation Fuels Using Fischer-Tropsch Synthesis
Omar M. Basha1,Li Weng2,Zhuo-wu Men2,Wayne Xu2,Badie I. Morsi1()
1. Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
2. National Institute of Clean-and-low-carbon Energy, Beijing 102209, PR China
 Download: PDF(2740 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

China is currently the world’s top coal consumer and the largest oil importer to sustain its rising economy and meet the mounting demand for transportation fuels. However, the increasing emissions due to the huge fossil fuels consumption, coupled with oil market instability, could derail China’s economic growth and jeopardize its national energy security. To face such a hurdle, China has been aggressively supporting low-carbon businesses opportunuties over the past decade, has recently announced several plans to cap coal utilization, and is currently the biggest investor in clean energy technologies. Coal-to-Liquid (CTL) is one of the most promising clean coal technologies, offering an ideal solution that can meet China’s energy demands and environmental expectations. It is widely known that the Shenhua Group has pioneered and is currently leading the commercialization of the Direct Coal Liquefaction (DCL) process in China.

This paper highlights a part of the joint research effort undertaken by the National Institute of Clean-and-Low-Carbon Energy (NICE) and University of Pittsburgh in order to develop and commercialize the Indirect Coal Liquefaction (ICL) process. In this mission, NICE has built and operated an ICL plant including a large-scale (5.8-m ID and 30-m height) Slurry-Bubble-Column Reactor (SBCR) for Fischer-Tropsch synthesis using iron catalyst. The research, conducted at the University of Pittsburgh over the past few years, allowed building a user-friendly Simulator, based on a comprehensive SBCR model integrated with Aspen Plus and is validated using data from the NICE actual ICL plant. In this paper, the Simulator predictions of the performance of the NICE SBCR, operating with iron and cobalt catalysts under four different tail gas recycle strategies: (1) direct recycle; (2) using a Pressure Swing Adsorption (PSA) unit; (3) using a reformer; and (4) using a Chemical looping Combustion (CLC) process, are presented. It should be mentioned also that our joint research effort has laid the foundation for the design of a commercial-scale SBCR for producing one-million tons per annum of environmentally friendly and ultraclean (no sulfur, no nitrogen and virtually no aromatics) transportation fuels, which could greatly contribute to ensuring China’s national energy security while curbing its lingering emission problems.

Keywords Fischer-Tropsch synthesis      tail gas recycle      simulations      process design     
Corresponding Author(s): Badie I. Morsi   
Issue Date: 27 December 2016
 Cite this article:   
Omar M. Basha,Li Weng,Zhuo-wu Men, et al. NICE’s Indirect Coal-to-Liquid Process for Producing Clean Transportation Fuels Using Fischer-Tropsch Synthesis[J]. Front. Eng, 2016, 3(4): 362-376.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2016049
https://academic.hep.com.cn/fem/EN/Y2016/V3/I4/362
Fig.1  Fossil energy production (a) and consumption (b) in China (World Bank, 2014).
Fig.2  Total CO2 emissions (a) and CO2 emissions per capita (b) (World Bank, 2014).
Fig.3  New investments in clean energy over the past decade (National Science Board, 2014).
Fig.4  Schematic of the ICL and DCL processes.
Fig.5  Reactors for F-T synthesis (Basha, Sehabiague, Abdelwahab, & Morsi, 2015).
Fig.6  Photographs of the SBCR (top) and gas distributor (bottom) at RAPEL.
Fig.7  Effect of catalyst concentration and reactor height on C5+ products yield (Sehabiague et al., 2015).
Fig.8  Process scheme with direct tail gas recycle (a), Stream numbers (b).
Item Parameter Value
Reactor L/m 30
D/m 5.8
Sparger Sparger coefficient/г 100
Cooling Pipes Number 604
Outside diameter/m 0.057–0.089
Operating
Variables
T/K 528
P/bar 28
Ug/(m·s?1) 0.1?0.5
Fresh syngas flow rate 125,000 Nm3/h (0°C and 1 atm)
UL/(m·s?1) 0.00015
Solid loading/kg 14,000
Tab.1  NICE F-T SBCR Operating Conditions Used in the Simulations
Component Mole Fraction
H2 0.5247
CO 0.3446
CO2 0.0002
N2 0.1272
O2 0.0027
CH4 0.0003
H2S <0.02 mg/Nm3
Tab.2  Fresh Syngas Composition Used in the Simulation
Catalyst Reaction T/°C Equation Parameters
NICE
Catalyst
(Fe)
F-T 255 r F T = k P C O P H 2 P C O + a P H 2 O + b P C O 2 k = 0.118 mol·kg?1·s?1·MPa?1
a = 5.9
b = 5.9
WGS 255 r C O 2 = k ( P C O P H 2 O P H 2 P C O 2 K p ) ( P C O + a P H 2 O + b P C O 2 ) 2 k = 0.083 mol·kg?1·s?1
a = 1.9
b = 1.9
KP= 79.7
Tab.3  NICE Kinetics for Iron Catalyst Used in the Simulation
Catalyst Operating Conditions Equation Reference
Fe/Cu/K/SiO2 Slurry Reactor
T= 250?290°C
P= 1.0?2.5 MPa
H2/CO feed = 0.67?1.5

rCnH2n=K1K2K3k8,+(1βn)PCOPH22PH2Oi=2nαi[S]2PH2knk8PCnH2n[σ]knPH2+k8,+,(n2)rCH4=K1K2K3K6k7,MK40.5PCOPH22.5PH2O[S]2rCnH2n+2=K1K2K3K6k7K4PCOPH23PH2Oi=2nαi[S]2+PH2knk8PCnH2n[σ]knPH2+k8,+,(n2)
Chang et al., 2007
Fe/Mn& Fe/Cu/K Spinning Basket Reactor
T= 260?300°C
P=1.1?2.6 MPa
H2/CO feed = 0.67?2.05

rCH3OH=k9,1K1K4K7K8PCOPH22[S]2
rCH4=k11,1αT,1K2PH2  [S]2
rCnH2n+1OH=k9K1K4K7K8PCOPH22i=1n1αT,1[S]2
rCnH2n1OOH=k10K1K7PCOPH2OK6i=1n1αT,1[S]2
rCnH2n+2=k11K4PH2[S]2i=1nαT,1
rCnH2n=k12K4PH2[S]i=1nαT,1(1βn)
Teng et al., 2006
Tab.4  Literature Kinetics of Iron Catalyst Used in the Simulation
Catalyst Operating Conditions Equation Reference
Fe/Cu/K/SiO2 Slurry Reactor
T= 250?290°C
P= 1.0?2.5 MPa
H2/CO feed = 0.67?1.5
r W G S = a ( P C O P H 2 O P H 2 0.5 P H 2 0.5 P C O 2 K e q ) ( 1 + b P C O P H 2 O P H 2 0.5 ) 2 Chang et al., 2007
Fe/Mn& Fe/Cu/K Spinning Basket Reactor
T= 260?300°C
P=1.1?2.6 MPa
H2/CO feed = 0.67?2.05
r W G S = a ( P C O P H 2 O P H 2 P C O 2 K e q ) c P H 2 0.5 + P H 2 + d P C O P H 2 O P H 2 Teng et al., 2006
Tab.5  Literature WGS Kinetics for Iron Catalyst Used in the Simulation
Catalyst Operating Conditions Equation Reference
Co-Re/Al2O3 Batch Reactor
T= 205, 220, 230°C
P= 1.5, 2.5 MPa
H2/CO feed =1.4, 2.1

rCH4=kSMK70.5PH21.5α1[S]
rC2H4=k6E,0e2cK7PH2α1α2[S]
rCnH2n+2=k5K70.5PH21.5α1α2i=3nαi[S]
n≥2
rCnH2n=k6,0ecnK7PH2α1α2i=3nαi[S]

n≥3

[S]=1/{1+K7PH2+K7PH2(1+1K4+1K3K4PH2+1K2K3K4PH2OPH22)?(α1+α1α2+α1α2i=3nj=3iαj)}
Todic et al., 2013
Co/MgO/ThO2/SiO2& Co/SiO2 Slurry Reactor
T=190?210°C
PH2 = 0.01?1.93 MPa
PCO = 0.05?2.54 MPa

rFT=akFTPH21.5PCOPH2O(1+a(PH2PCO2/PH2O))2
Steen & Schulz., 1999
Co/MgO/SiO2 Slurry Reactor
T= 220?240°C
P= 1.5?3.5 MPa
H2/CO feed =1.5?3.5

rFT=kFTPH2PCO(1+aPCO)2
Yates&Satterfiel.,1991
Tab.6  Literature Kinetics of Cobalt Catalyst Used in the Simulation
Fig.9  Effects of recycle ratio on CO per-pass conversion for (a) iron and (b) cobalt kinetics, and on H2 per-pass conversion for (c) iron and (d) cobalt kinetics.
Fig.10  Effects of recycle ratio on the overhead hydrocarbon condensate yield for (a) iron and (b) cobalt kinetics; and on the wax yield for (c) iron and(d) cobalt kinetics.
Fig.11  Schematic diagram of the use of PSA strategy.
Recycle ratio at maximum overall product yield Maximum increase in overhead hydrocarbon condensate/% Maximum increase in wax yield/%
NICE 0.35 5.01 4.87
Chang (Fe) (Chang et al., 2007) 0.33 4.15 5.50
Teng (Fe) (Teng et al., 2006) 0.31 5.77 3.50
Todic (Co) (Todic et al., 2013) 0.27 4.25 4.95
Steen and Schulz (Co)
(Steen & Schulz, 1999)
0.29 5.50 5.60
Yates and Satterfield (Co)
(Yates & Satterfield, 1991)
0.28 5.20 4.25
Tab.7  Performance Metrics for H2 Recycle Using PSA Strategy
Fig.12  Schematic diagram of the use of reformer strategy.
Recycle ratio at maximum overall product yield Maximum increase in overhead hydrocarbon condensate/% Maximum increase in wax yield/%
NICE 1.47 ?4.34 2.23
Chang (Fe) (Chang et al., 2007) 1.41 ?3.40 2.13
Teng (Fe) (Teng et al., 2006) 1.43 ?3.89 2.28
Todic (Co) (Todic et al., 2013) 1.32 ?2.59 2.45
Steen and Schulz (Co) (Steen & Schulz, 1999) 1.40 ?4.31 2.13
Yates and Satterfield (Co) (Yates & Satterfield, 1991) 1.63 ?4.03 2.75
Tab.8  Performance Metrics for Tail Gas Reforming and Recycle Strategy
Fig.13  Schematic diagram of the use of CLC strategy.
Recycle ratio at maximum overall product yield Maximum increase in overhead hydrocarbon condensate/% Maximum increase in wax yield/%
NICE 1.41 5.67 6.51
Chang (Fe) (Chang et al., 2007) 1.56 7.35 5.88
Teng (Fe) (Teng et al., 2006) 1.67 7.63 6.37
Todic (Co) (Todic et al., 2013) 1.58 8.40 7.42
Steen and Schulz (Co) (Steen & Schulz, 1999) 1.79 8.26 6.93
Yates and Satterfield (Co) (Yates & Satterfield, 1991) 1.86 7.07 7.35
Tab.9  Performance Metrics for CLC Utilization Strategy
Fig.14  Schematic diagram of the use of CLC strategy.
1 Basha, O.M., Sehabiague, L., Abdelwahab, A., & Morsi, B.I. (2015). Fischer–Tropsch synthes is in slurry bubble column reactors: Experimental investigations and modeling–areview. International Journal of Chemical Reactor Engineering, 13, 201–288. Available at: .
https://doi.org/10.1515/ijcre-2014-0146
2 Botes, F.G., Niemantsverdriet, J.W., & van de Loosdrecht, J. (2013). A comparison of cobalt and iron based slurry phase Fischer–Tropsch synthesis. Catalysis Today, 215, 112–120. Available at: .
https://doi.org/10.1016/j.cattod.2013.01.013
3 British Petroleum. (2014). BP statistical review of world energy. Retrieved from
4 Chang, J., Bai, L., Teng, B., Zhang, R., Yang, J., Xu, Y., Xiang, H.W., & Li, Y.W. (2007). Kinetic modeling of Fischer-Tropsch synthesis over Fe-Cu-K-SiO2 catalyst in slurry phase reactor. Chemical Engineering Science, 62, 4983–4991.
https://doi.org/10.1016/j.ces.2006.12.031
8 de Klerk, A. (2011). Fischer-Tropsch refining. Retrieved from
5 Dry, M.E. (2002). The Fischer-Tropsch process: 1950‒2000. Catalysis Today, 71, 227–241.
https://doi.org/10.1016/S0920-5861(01)00453-9
6 Fan, L.S. (2010). Chemical looping systems for fossil energy conversions. New York: John Wiley & Sons, Inc.
7 Grande, C.A. (2012). Advances in pressure swing adsorption for gas separation. ISRN Chemical Engineering.
9 Liu, G., Larson, E.D., Williams, R.H., Kreutz, T.G., & Guo, X. (2011). Making Fischer-Tropsch fuels and electricity from coal and biomass: performance and cost analysis. Energy & Fuels, 25, 415–437.
https://doi.org/10.1021/ef101184e
10 Liu, Z. (2015). China’s carbon emissions report 2015. Cambridge: Harvard Kennedy School of Government.
11 National Science Board. (2014). Science & engineering indicators. Retrieved from
12 Papadias, D.D., Ahmed, S., Kumar, R., & Joseck, F. (2009). Hydrogen quality for fuel cell vehicles–a modeling study of the sensitivity of impurity content in hydrogen to the process variables in the SMR–PSA pathway. International Journal of Hydrogen Energy, 34, 6021–6035.
https://doi.org/10.1016/j.ijhydene.2009.06.026
13 Sehabiague, L., Basha, O.M., Hong, Y., Morsi, B., Shi, Z., Jia, H., Weng, L., Men, Z., Liu, K., & Cheng, Y. (2015). Assessing the performance of an industrial SBCR for Fischer–Tropsch synthesis: experimental and modeling. AIChE Journal. American Institute of Chemical Engineers, 61, 3838–3857.
https://doi.org/10.1002/aic.14931
14 Sehabiague, L., Lemoine, R., Behkish, A., Heintz, Y.J., Sanoja, M., Oukaci, R., & Morsi, B.I. (2008). Modeling and optimization of a large-scale slurry bubble column reactor for producing10,000 bbl/day of Fischer-Tropsch liquid hydrocarbons. Journal of the Chinese Institute of Chemical Engineers, 39, 169–179.
https://doi.org/10.1016/j.jcice.2007.11.003
15 Sehabiague, L., & Morsi, B.I. (2013). Modeling and simulation of a Fischer–Tropsch slurry bubble column reactor using different kinetic rate expressions for iron and cobalt catalysts. International Journal of Chemical Reactor Engineering, 11, 1–22.
https://doi.org/10.1515/ijcre-2012-0042
16 Speight, J.G. (2012). The chemistry a technology of coal. USA: CRC Press
18 Steynberg, P., Dry, M.E., Davis, B.H., & Breman, B.B. (2004). Fischer-Tropsch reactors studies. In A. Steynberg, B.V. Elsevier, & M. Dry (Eds.), Studies in Surface Science and Catalysis. Retrieved from
19 Teng, B., Chang, J., Zhang, C., Cao, D., Yang, J., Liu, Y., Guo, X., Xiang, H., & Li, Y. (2006). A comprehensive kinetics model of Fischer–Tropsch synthesis over an industrial Fe–Mn catalyst. Applied Catalysis A, General, 301, 39–50.
https://doi.org/10.1016/j.apcata.2005.11.014
20 Todic, B., Bhatelia, T., Froment, G.F., Ma, W., Jacobs, G., Davis, B.H., & Bukur, D.B. (2013). Kinetic model of Fischer–Tropsch synthesis in a slurry reactor on Co–Re/Al2O3 catalyst. Industrial & Engineering Chemistry Research, 52, 669–679.
https://doi.org/10.1021/ie3028312
21 U. S. Energy Information Administration. (2014). Annual energy outlook 2014. Washington DC: Energy Information Administration.
17 van Steen, E, & Schulz, H. (1999). Polymerisation kinetics of the Fischer–Tropsch CO hydrogenation using iron and cobalt based catalysts. Applied Catalysis A, General, 186, 309–320.
https://doi.org/10.1016/S0926-860X(99)00151-9
22 Wood, D.A., Nwaoha, C., & Towler, B.F. (2012). Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas. Journal of Natural Gas Science and Engineering, 9, 196–208. Available at: .
https://doi.org/10.1016/j.jngse.2012.07.001
23 World Bank. (2014). World development indicators. Washington, DC: World Bank.
24 Yates, I.C., & Satterfield, C.N. (1991). Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst. Energy & Fuels, 5, 168–173.
https://doi.org/10.1021/ef00025a029
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed