Please wait a minute...
Frontiers of Engineering Management

ISSN 2095-7513

ISSN 2096-0255(Online)

CN 10-1205/N

Postal Subscription Code 80-905

Front. Eng    2017, Vol. 4 Issue (2) : 212-220    https://doi.org/10.15302/J-FEM-2017019
RESEARCH ARTICLE
Winner determination problem with loss-averse buyers in reverse auctions
Xiaohu QIAN1, Min HUANG2(), Yangyang YU2, Xingwei WANG3
1. College of Information Science and Engineering, State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China; Research Institute of Business Analytics & Supply Chain Management, College of Management, Shenzhen University, Shenzhen 518060, China
2. College of Information Science and Engineering, State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
3. College of Software, Northeastern University, Shenyang 110819, China
 Download: PDF(212 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Reverse auctions have been widely adopted for purchasing goods and services. This paper considers a novel winner determination problem in a multiple-object reverse auction in which the buyer involves loss-averse behavior due to uncertain attributes. A corresponding winner determination model based on cumulative prospect theory is proposed. Due to the NP-hard characteristic, a loaded route strategy is proposed to ensure the feasibility of the model. Then, an improved ant colony algorithm that consists of a dynamic transition strategy and a Max-Min pheromone strategy is designed. Numerical experiments are conducted to illustrate the effectiveness of the proposed model and algorithm. We find that under the loaded route strategy, the improved ant colony algorithm performs better than the basic ant colony algorithm. In addition, the proposed model can effectively characterize the buyer’s loss-averse behavior.

Keywords reverse auction      loss aversion      winner determination      improved ant colony algorithm     
Corresponding Author(s): Min HUANG   
Just Accepted Date: 08 June 2017   Online First Date: 05 July 2017    Issue Date: 17 July 2017
 Cite this article:   
Xiaohu QIAN,Min HUANG,Yangyang YU, et al. Winner determination problem with loss-averse buyers in reverse auctions[J]. Front. Eng, 2017, 4(2): 212-220.
 URL:  
https://academic.hep.com.cn/fem/EN/10.15302/J-FEM-2017019
https://academic.hep.com.cn/fem/EN/Y2017/V4/I2/212
Fig.1   Description of the winner determination problem
Model parameters
i:Index of suppliers, i=1,2,,n
ci:Unit price of supplier i
k:Fixed cost of choosing a supplier
q:Penalty cost if the delivery delays
L:Total demand of the buyer
Qi:Maximum capacity of supplier i
di:Expected delivery of supplier i
pi:Delay probability of supplier i
P1:Average delay probability of all selected suppliers
Cm:Expected procurement cost of the buyer
Tm:Expected delivery of the buyer
Behavior Parameters
α:Gain preference
β:Loss preference
λ:Degree of loss aversion
γ:Parameter of weighting functions for gain
δ:Parameter of weighting functions for loss
Decision variables
xi:Binary variable, xi=1 if supplier i is selected, otherwise, xi=0
yi:Integer variable, supply quantity of supplier i
Tab.1  
j:Index of ants, j=1,2,,mρ:Pheromone evaporation rate, ρ[0,1]
A:Sets of suppliers allowed to be selectedτmax?:Maximum pheromone trail
pij:Probability of supplier i selected by ant jτmin?:Minimum pheromone trail
Q:Total amount of pheromone presented on potential suppliers
τi:Pheromone trail of supplier i
ηi:Heuristic information of supplier itIndex of loops
a:Importance parameter of pheromone trailhjt:Number of selected suppliers for loop t by ant j
b:Importance parameter of heuristic information
fInitial amount of pheromone
k:Number of current iterationsNP:Size of population
gi:Number of currently selected suppliersNG:Number of total loops
Tab.2  
Na)Alg b)NPNGabρfQτmin?τmax?WSBSMeanSDTime
10EM- c)--------80.9480.9480.94-7092.64
ACA-LRS7010001.00.50.62.5130.43.277.6180.9478.831.191.95
IACA-LRS503000.90.50.52.5150.53.880.9480.9480.9400.42
20EM--------------
ACA-LRS8517001.51.30.64.2150.54.5142.79146.25144.623.249.65
IACA7015001.51.20.74.0170.65145.78149.40147.191.736.42
30EM--------------
ACA-LRS9520001.11.20.64.0170.44.5120.74131.05125.665.2926.70
IACA-LRS8015001.31.20.54.3170.45129.58131.05130.243.2820.16
Tab.3  Results obtained with different algorithms under different scales
TmCmC0SBSWSMeanSDTime
64450044553.03000-309.94-309.94-309.9400.42
74450044514.02500-259.06-259.06-259.0600.42
84450044514.01900-204.06-204.06-204.0600.42
94450044208.01600-69.81-69.81-69.8100.42
104450044282.5100080.9480.9480.9400.42
114450044208.0600181.44181.44181.4400.42
124450044208.0300256.81256.81256.8100.42
134450044208.0100280.33280.33280.3300.42
144450044208.00291.5291.5291.500.42
154450044208.00291.5291.5291.500.42
Tab.4  Effects of expected delivery on the optimal solutions
CmTmC0SBSWSMeanSDTime
440001044208.51000-551.69-551.69-551.6900.42
441001044208.51000-359.65-359.65-359.6500.42
442001044208.51000-186.74-186.74-186.7400.42
443001044208.51000-129.61-129.61-129.6100.42
444001044208.51000-33.02-33.02-33.0200.42
445001044208.5100080.9580.9580.9500.42
446001044208.51000194.90194.90194.9000.42
447001044208.51000308.86308.86308.8600.42
448001044208.51000422.81422.81422.8100.42
449001044208.5600536.77536.77536.7700.42
Tab.5  Effects of expected procurement cost on the optimal solutions
Na)ModelSolutionsBSWSMeanSDTime
10EU-WD(1,125),(2,160),(7,69),(9,55),(10,91)179.83179.83179.8300.42
PT-WD(1,125),(2,160),(3,110),(5,13),(10,92)50.0750.0750.0700.42
CPT-WD(1,125),(2,160),(7,69),(9,55),(10,91)80.9480.9480.9400.42
20EU-WD(2,120),(4,51),(6,136),(11,64),(12,135),(14,94)291.71286.37288.412.146.42
PT-WD(2,120),(4,51),(6,136),(11,64),(12,135),(14,94)76.8872.3774.671.896.41
CPT-WD(2,120),(6,59),(11,64),(12,135),(14,94),(20,128)149.40145.78147.191.736.42
30EU-WD(11,140),(19,95),(20,86),(26,190),(30,139)170.80162.58168.443.5920.16
PT-WD(11,140),(19,95),(20,60),(26,190),(30,165)70.3565.4967.233.4620.17
CPT-WD(11,140),(19,95),(20,86),(26,190),(30,139)131.05129.58130.243.2920.16
Tab.6  Results obtained with different models under different scales
Fig.2  Comparison analysis of different models under IACA-LRS
1 Banerji A, Gupta N (2014). Detection, identification, and estimation of loss aversion: Evidence from an auction experiment. American Economic Journal: Microeconomics, 6(1): 91–133
2 Cachon G P, Zhang F (2006). Procuring fast delivery: Sole sourcing with information asymmetry. Management Science, 52(6): 881–896
3 De Boer L, Labro E, Morlacchi P (2001). A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management, 7(2): 75–89
4 De Vries S, Vohra R V (2003). Combinatorial auctions: A survey. INFORMS Journal on Computing, 15(3): 284–309
5 Escudero L F, Landete M, Marín A (2009). A branch-and-cut algorithm for the winner determination problem. Decision Support Systems, 46(3): 649–659
6 Hishamuddin H, Sarker R A, Essam D (2013). A recovery model for a two-echelon serial supply chain with consideration of transportation disruption. Computers & Industrial Engineering, 64(2): 552–561
7 Ho W, Xu X, Dey P K (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1): 16–24
8 Huang M, Qian X, Fang S C, Wang X (2016). Winner determination for risk aversion buyers in multi-attribute reverse auction. Omega, 59: 184–200
9 Jackson C (1976). Technology for spectrum markets. Ph.D. thesis, Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA
10 Kahneman D, Tversky A (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2): 263–291
11 Ma Z, Kwon R H, Lee C G (2010). A stochastic programming winner determination model for truckload procurement under shipment uncertainty. Transportation Research Part E: Logistics and Transportation Review, 46(1): 49–60
12 Qian X, Fang S C, Huang M, An Q, Wang X (2017). Reverse auctions with regret-anticipated bidders. Annals of Operations Research
13 Qian X, Fang S C, Huang M, Nie T, Wang X (2016). Bidding decisions with nonequilibrium strategic thinking in reverse auctions. Working Paper, 1–28
14 Rassenti S J, Smith V L, Bulfin R L (1982). A combinatorial auction mechanism for airport time slot allocation. Bell Journal of Economics, 13(2): 402–417
15 Rekik M, Mellouli S (2012). Reputation-based winner determination problem for combinatorial transportation procurement auctions. Journal of the Operational Research Society, 63(10): 1400–1409
16 Remli N, Rekik M (2013). A robust winner determination problem for combinatorial transportation auctions under uncertain shipment volumes. Transportation Research Part C: Emerging Technologies, 35: 204–217
17 Sandholm T (2002). Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence, 135(1): 1–54
18 Singh R K, Benyoucef L (2011). A fuzzy TOPSIS based approach for e-sourcing. Engineering Applications of Artificial Intelligence, 24(3): 437–448
19 Srinivasan S, Stallert J, Whinston A B (1998). Portfolio trading and electronic networks. Working Paper, 1–26
20 Tang C S, Zhang K, Zhou S X (2015). Incentive contracts for managing a project with uncertain completion time. Production and Operations Management, 24(12): 1945–1954
21 Tunca T I, Wu D J, Zhong F (2014). An empirical analysis of price, quality, and incumbency in procurement auctions. Manufacturing & Service Operations Management: M & SOM, 16(3): 346–364
22 Tversky A, Kahneman D (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4): 297–323
23 Wang X, Wang X, Che H, Li K, Huang M, Gao C (2015). An intelligent economic approach for dynamic resource allocation in cloud services. IEEE Transactions on Cloud Computing, 3(3): 275–289
24 Wang X, Sun J, Li H, Wu C, Huang M (2013). A reverse auction based allocation mechanism in the cloud computing environment. Applied Mathematics & Information Sciences, 7(1): 75–84
25 Zhang B, Yao T, Friesz T L, Sun Y (2015). A tractable two-stage robust winner determination model for truckload service procurement via combinatorial auctions. Transportation Research Part B: Methodological, 78: 16–31
26 Zhou S X, Tao Z, Zhang N, Cai G G (2016). Procurement with reverse auction and flexible noncompetitive contracts. Decision Sciences, 47(3): 554–581
[1] Xianjia WANG, Shiwei WU. Mechanism design of reverse auction on concession period and generalized quality for PPP projects[J]. Front. Eng, 2017, 4(2): 156-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed