Changes of wetland landscape patterns in Dadu River catchment from 1985 to 2000, China
Changes of wetland landscape patterns in Dadu River catchment from 1985 to 2000, China
Laibin HUANG1, Junhong BAI1(), Denghua YAN2, Bin CHEN1, Rong XIAO1, Haifeng GAO1
1. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; 2. China Institute of Water Resources and Hydropower Research, Beijing 100044, China
Based on the interpretation and vector processing of remote sensing images in 1985 and 2000, the spatial changes of wetland landscape patterns in Dadu River catchment in the last two decades were studied using spatial analysis method. Supported by Apack software, the indices of wetland landscape pattern were calculated, and the information entropy (IE) was also introduced to show the changes of wetland landscape information. Results showed that wetland landscape in this region was characteristic of patch-corridor-matrix configuration and dominantly consisted of natural wetlands. Landscape patterns changed a little with low fragment and showed concentrated distribution with partial scattered distribution during the period from 1985 to 2000. The values of patch density and convergence index kept stable, and the values of diversity, evenness indices and IE showed a slight decrease, while dominance and fractal dimension indices were increased. All types of wetland landscapes had higher adjacency probabilities with grassland landscape in 1985 and 2000, and there was extremely weak hydrological link and large spatial gap among river, glacier, reservoir and pond wetlands due to low adjacency matrix values. Since their cumulative contribution exceeded 81% through the PCA analysis, the agriculture activities would be the main driving force to the landscape changes during the past 15 years.
Corresponding Author(s):
BAI Junhong,Email:junhongbai@163.com
引用本文:
. Changes of wetland landscape patterns in Dadu River catchment from 1985 to 2000, China[J]. Frontiers of Earth Science, 2012, 6(3): 237-249.
Laibin HUANG, Junhong BAI, Denghua YAN, Bin CHEN, Rong XIAO, Haifeng GAO. Changes of wetland landscape patterns in Dadu River catchment from 1985 to 2000, China. Front Earth Sci, 2012, 6(3): 237-249.
álvarez-Rogel J, Jiménez-Cárceles F J, Roca M J, Ortiz R (2007). Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities. Estuar Coast Shelf Sci , 73(3–4): 510–526 doi: 10.1016/j.ecss.2007.02.018
2
An N, Gao N, Liu C (2008). Wetland degradation in China: causes, evaluation, and protection measures. Chin J Ecol , 27(5): 821–828 (in Chinese)
3
Bai J H, Ouyang H, Yang Z F, Cui B S, Cui L J, Wang Q G (2005). Changes in wetland landscape pattern: a review. Progr Geogr , 24(4): 36–45 (in Chinese)
4
Bai J H, Ouyang H, Cui B S, Wang Q G, Chen H (2008). Changes in landscape pattern of alpine wetlands on the Zoige Plateau in the past four decades. Acta Ecol Sin , 28(5): 2245–2252 doi: 10.1016/S1872-2032(08)60046-3
5
Bennion H (1994). A diatom phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia , 275/276: 391–410
6
Brazner J C, Danz N P, Niemi G J, Regal R R, Trebitz A S, Howe R W, Hanowski J M, Johnson L B, Ciborowski J J H, Johnston C A, Reavie E D, Brady V J, Sgro G V (2007). Evaluation of geographic, geomorphic and human influences on Great Lakes wetland indicators: a multi-assemblage approach. Ecol Indic , 7(3): 610–635 doi: 10.1016/j.ecolind.2006.07.001
7
Brown M T(1989). A simulation model of hydrology and nutrient dynamics in wetlands. Comput Environ Urban Syst , 12(4): 221–237 doi: 10.1016/0198-9715(88)90029-4
8
Cabezas á, González E, Gallardo B, García M, González M, Comín F A (2008). Effects of hydrological connectivity on the substrate and understory structure of riparian wetlands in the Middle Ebro River (NE Spain): implications for restoration and management. Aquat Sci , 70(4): 361–376 doi: 10.1007/s00027-008-8059-4
9
Canziani G A, Ferrati R M, Rossi C, Ruiz-Moreno D (2006). The influence of climate and dam construction on the Ibera wetlands, Argentina. Reg Environ Change , 6(4): 181–191 doi: 10.1007/s10113-006-0018-9
10
Carranza M L, Acosta A C, Ricotta C (2007). Analyzing landscape diversity in time: the use of Rènyi’s generalized entropy function. Ecol Indic , 7(3): 505–510 doi: 10.1016/j.ecolind.2006.05.005
11
Chen L, Liu Y, Lü Y, Feng X, Fu B (2008). Pattern analysis in landscape ecology: progress challenges and outlook. Acta Ecol Sin , 28(11): 5521–5531 doi: 10.1016/S1872-2032(09)60011-1
12
Elliot S H (1968). IUCN ecology commission’s technical meeting in Turkey on wetlands conservation in Western Asia, October 1967. Biol Conserv , 1(1): 97–98 doi: 10.1016/0006-3207(68)90044-X
13
Forman R T T (1983). Corridors in a landscape: their eco-logical structure and function. Ecology , 2: 375–387
14
Gibbes C, Southworth J, Keys E (2009). Wetland conservation: change and fragmentation in Trinidad’s protected areas. Geoforum , 40(1): 91–104 doi: 10.1016/j.geoforum.2008.05.005
15
Good I J (1963). Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables. Ann Math Stat , 34(3): 911–934 doi: 10.1214/aoms/1177704014
16
Hansson L A, Br?nmark C, Anders N P, ?bj?rnsson K (2005). Con?icting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshw Biol , 50(4): 705–714 doi: 10.1111/j.1365-2427.2005.01352.x
17
Herkert J R, Reinking D L, Wiedenfeld D A, Winter M, Zimmerman J L, Jensen W E, Finck E J, Koford R R, Wolfe D H, Sherrod S K, Jenkins M A, Faaborg J, Robinson S K (2003). Effects of prairie fragmentation on the nest success of breeding birds in the mid-continental United States. Conserv Biol , 17(2): 587–594 doi: 10.1046/j.1523-1739.2003.01418.x
18
Hodge I, McNally S (2000). Wetland restoration, collective action and the role of water management institutions. Ecol Econ , 35(1): 107–118 doi: 10.1016/S0921-8009(00)00171-3
19
Huang H J, Li F, Pang J Z (2005). Interaction Research of Land–Ocean Between Yellow Sea and Bohai. Beijing: Science Press, 61–64 (in Chinese)
20
Huang G Q (2000). Sichuan Statistical Yearbook. Beijing: Chinese Statistical Press, 101–196 (in Chinese)
21
Jaynes E T (1979). Where do we stand on maximum entropy? In: Levine R D, Tribus M, eds. The Maximum Entropy Formalism . Cambridge: MIT Press, 1–105
22
Johnson G D, Patil G P (1998). Quantitative multiresolution characterization of landscape patterns for assessing the status of ecosystem health in watershed management areas. EcoHealth , 4(3): 177–187
23
Keddy P A (1992). A pragmatic approach to functional ecology. Funct Ecol , 6(6): 621–626 doi: 10.2307/2389954
24
Kong C F, Xu K, Wu C L (2007). Research on the landscape change of Yeya Lake wetland based on remote sensing fusion. In: Conference on Remotely Sensed Data and Information. 2007, May, 25th–27th, Nanjing, China , 6752(2): 277–786
25
Kullback J (1959). Information Theory and Statistics. New York: John Wiley & Sons, 353–393
26
Li A, Deng W, Kong B, Song M, Feng W, Lu X, Lei G, Bai J (2010). A comparative analysis on spatial patterns and processes of three typical wetland ecosystems in 3H area, China. Procedia Environmental Sciences , 2: 315–332 doi: 10.1016/j.proenv.2010.10.037
27
Li H, Reynolds J F (1993). A new contagion index to quantify spatial patterns of landscapes. Landscape Ecol , 8(3): 155–162 doi: 10.1007/BF00125347
28
Li S, Wang G, Deng W, Hu Y, Hu W (2009). Influence of hydrology process on wetland landscape pattern: a case study in the Yellow River Delta. Ecol Eng , 35(12): 1719–1726 doi: 10.1016/j.ecoleng.2009.07.009
29
Li X, Jongman R H G, Hu Y, Bu R, Harms B, Bregt A K, He H S (2005). Relationship between landscape structure metrics and wetland nutrient retention function: a case study of Liaohe Delta, China. Ecol Indic , 5(4): 339–349 doi: 10.1016/j.ecolind.2005.03.007
30
Lin M L, Cao Y, Wang S (2008). Limitations of landscape pattern analysis based on landscape indices: a case study of Lizejian wetland in Yilan of Taiwan Province, China. Chin J Appl Ecol , 19(1): 139–143
31
Liu H Y, Li Z F (2006). Spatial gradients of wetland landscape and their influential factors in watershed. Acta Ecol Sin , 26(1): 213–220
32
Mikhailov V N, Kravtsova V I, Magritskii D V (2003). Hydrological and morphological processes in the Kura river delta. Water Res , 30(5): 495–508 doi: 10.1023/A:1025773029217
33
Mladenoff D J, Dezonia B (1997). APACK 2.0 User’s Guide. Department of Forest Ecology and Management, University of Wisconsin-Madison, Madison, USA
34
Montalto F A, Steenhuis T S, Parlange J Y (2006). The hydrology of Piermont Marsh, a reference for tidal marsh restoration in the Hudson river estuary, New York. J Hydrol (Amst) , 316(1–4): 108–128 doi: 10.1016/j.jhydrol.2005.03.043
35
Niedermeier A, Robinson J S (2009). Phosphorus dynamics in the ditch system of a restored peat wetland. Agric Ecosyst Environ , 131 (3–4): 161–169 doi: 10.1016/j.agee.2009.01.011
36
O’Connell M J (2003). Detecting, measuring and reversing changes to wetlands. Wetlands Ecol Manage , 11(6): 397–401 doi: 10.1023/B:WETL.0000007191.77103.53
37
O’Neill R V, Krummel J R, Gardner R H, Sugihara G, Jackson B, DeAngelist D L, Milne B T, Turner M G, Zygmunt B, Christensen S W, Dale V H, Graham R L (1988). Indices of landscape pattern. Landsc Ecol , 1(3): 153–162 doi: 10.1007/BF00162741
38
Pan D, Domon G, de Blois S, Bouchard A (1999). Temporal (1958–1993) and spatial patterns of land use changes in Haut-Saint-Laurent (Quebec, Canada) and their relation to landscape physical attributes. Landsc Ecol , 14(1): 35–52 doi: 10.1023/A:1008022028804
39
Qin P, Mitsch W J (2009). Wetland restoration and ecological engineering: international conference of wetland restoration and ecological engineering. Ecol Eng , 35(4): 437–441 doi: 10.1016/j.ecoleng.2008.12.001
40
Rènyi A (1970). Probability Theory. Amsterdam: North Holland Publishing Company , 646–660
41
Riitters K H, O’Neill R V, Hunsaker C T, Wickham J D, Yankee D H, Timmins S P, Jones K B, Jackson B L (1995). A factor analysis of landscape pattern and structure metrics. Landsc Ecol , 10(1): 23–39 doi: 10.1007/BF00158551
42
Sahagian D, Melack J (1998). Global Wetland Distribution and Functional Characterization: Trace Gases and the Hydrologic Cycle. IGBP GAIM Report No.2 , 40
43
Schumaker N H (1996). Using landscape indices to predict habitat connectivity. Ecology , 77(4): 1210–1225 doi: 10.2307/2265590
44
Serraa P, Pons X, Saur D (2008). Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Appl Geogr , 28(3): 189–209 doi: 10.1016/j.apgeog.2008.02.001
45
Shannon C E (1948). A mathematical theory of communication. Bell Syst Tech J , 27: 379–423 , 623–656
46
Sluiter R, de Jong S M (2007). Spatial patterns of Mediterranean land abandonment and related land cover transitions. Landscape Ecol , 22(4): 559–576 doi: 10.1007/s10980-006-9049-3
47
Tang X, Huang G (2003). Study on classification system for wetland types in China. For Res , 16: 531–539 (in Chinese)
48
Thibault P A, Zipperer W C (1994). Temporal changes of wetlands within an urbanizing agricultural landscape. Landsc Urban Plan , 28(2–3): 245–251 doi: 10.1016/0169-2046(94)90 011-6
49
Tischendorf L (2001). Can landscape indices predict ecological processes consistently? Landscape Ecol , 16(3): 235–254 doi: 10.1023/A:1011112719782
50
Turner B L II, Meyer W B (1998). Global land-use and land cover change: an overview. In: Meyer W B, Turner B L II, eds. Change in Land Use and Land Cover: A Global Perspective . Cambridge: Cambridge University Press, 1–12
51
Turner M G, Gardner R H (1991). Quantitative Methods in Landscape Ecology. New York: Springer-Verlag, 417–442
52
Valdemoro H I, Sánchez-Arcilla A, Jiménez J A (2007). Coastal dynamics and wetlands stability. The Ebro delta case. Hydrobiologia, 577(1): 17–29 doi: 10.1007/s10750-006-0414-7
53
Wang G, Zhang Y (2002). Impacts of reservoir project on hydrologial and ecologial environment of Xianghai wetlands. Resources Science , 24(3): 26–30 (in Chinese)
54
Wang H, Yan D H, Qin D Y (2008). Water Source Area of West Line of South-to-North Water Diversion Project–Water Cycle Simulation and Quantitative Assessment of Water Resources. Zhengzhou: Water Conservancy of Yellow River Press, 28–44 (in Chinese)
55
Wang X L, Bu R, Hu Y M, Xiao I (1996). Analysis on landscape fragment of Liaohe Delta wetlands. Chin J Appl Eco , 7(3): 299–304
56
Wang Z, Song K, Zhang B, Liu D, Ren C, Luo L, Yang T, Huang N, Hu L, Yang H, Liu Z (2009). Shrinkage and fragmentation of grasslands in the West Songnen Plain, China. Agric Ecosyst Environ , 129(1–3): 315–324 doi: 10.1016/j.agee.2008.10.009
57
With K A, King A W (1999). Dispersal success on fractal landscapes: a consequence of lacunarity thresholds. Landsc Ecol , 14(1): 73–82 doi: 10.1023/A:1008030215600
58
Xiao D N, Zhao Y, Sun Z W (1991). Changes in spatial pattern of west suburb landscape in Shenyang City. In: Xiao D N, ed. Landscape Ecology: Theory, Methods and Applications . Beijing: Chinese Forestry Press, 186–195 (in Chinese)
59
You L, Wood S (2005). Assessing the spatial distribution of crop areas using a cross-entropy method. Int J Appl Earth Observ Geoinform , 7(4): 310–323 doi: 10.1016/j.jag.2005.06.010
60
Yue T X, Liu J Y, J?rgensen S E, Ye Q H (2003). Landscape change detection of the newly created wetland in Yellow River Delta. Ecol Model , 164(1): 21–31 doi: 10.1016/S0304-3800(02)00391-5
61
Zhang X L, Cai H S, Ding S T, Huang S G (2008). Analysis on the landscape pattern changes of Poyang Lake wetlands and their driving force. J Anhui Agri Sci , 36(36): 16065–16070, 16078 (in Chinese)