Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2016, Vol. 10 Issue (1): 63-73   https://doi.org/10.1007/s11707-015-0521-8
  本期目录
A statistical model to predict total column ozone in Peninsular Malaysia
K. C. TAN(), H. S. LIM, M. Z. MAT JAFRI
School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia
 全文: PDF(656 KB)  
Abstract

This study aims to predict monthly columnar ozone in Peninsular Malaysia based on concentrations of several atmospheric gases. Data pertaining to five atmospheric gases (CO2, O3, CH4, NO2, and H2O vapor) were retrieved by satellite scanning imaging absorption spectrometry for atmospheric chartography from 2003 to 2008 and used to develop a model to predict columnar ozone in Peninsular Malaysia. Analyses of the northeast monsoon (NEM) and the southwest monsoon (SWM) seasons were conducted separately. Based on the Pearson correlation matrices, columnar ozone was negatively correlated with H2O vapor but positively correlated with CO2 and NO2 during both the NEM and SWM seasons from 2003 to 2008. This result was expected because NO2 is a precursor of ozone. Therefore, an increase in columnar ozone concentration is associated with an increase in NO2 but a decrease in H2O vapor. In the NEM season, columnar ozone was negatively correlated with H2O (−0.847), NO2 (0.754), and CO2 (0.477); columnar ozone was also negatively but weakly correlated with CH4 (−0.035). In the SWM season, columnar ozone was highly positively correlated with NO2 (0.855), CO2 (0.572), and CH4 (0.321) and also highly negatively correlated with H2O (−0.832). Both multiple regression and principal component analyses were used to predict the columnar ozone value in Peninsular Malaysia. We obtained the best-fitting regression equations for the columnar ozone data using four independent variables. Our results show approximately the same R value (≈ 0.83) for both the NEM and SWM seasons.

Key wordsozone    SCIAMACHY    principal component analysis    Peninsular Malaysia
收稿日期: 2014-07-26      出版日期: 2015-12-25
Corresponding Author(s): K. C. TAN   
 引用本文:   
. [J]. Frontiers of Earth Science, 2016, 10(1): 63-73.
K. C. TAN, H. S. LIM, M. Z. MAT JAFRI. A statistical model to predict total column ozone in Peninsular Malaysia. Front. Earth Sci., 2016, 10(1): 63-73.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-015-0521-8
https://academic.hep.com.cn/fesci/CN/Y2016/V10/I1/63
  
  
  
1 S A Abdul-Wahab, C S Bakheit, S M Al-Alawi (2005). Principle component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ Model Softw, 20(10): 1263–1271
https://doi.org/10.1016/j.envsoft.2004.09.001
2 Y N Ahammed, R R Reddy, K R Gopal, K Narasimhulu, D B Basha, L S S Reddy, T V R Rao (2006). Seasonal variation of the surface ozone and its precursor gases during 2001−2003, measured at Anantapur (14.628N), a semi-arid site in India. Atmos Res, 80(2−3): 151–164
https://doi.org/10.1016/j.atmosres.2005.07.002
3 S M Al-Alawi, S A Abdul-Wahab, C S Bakheit (2008). Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ Model Softw, 20: 1263–1271
4 A Azid, H Juahir, M E Toriman, M K A Kamarudin, A S M Saudi, C N C Hasnam, N A A Aziz, F Azaman, M T Latif, S F M Zainuddin, M R Osman, M Yamin (2014). Prediction of the level of air pollution using principal component analysis and artificial neural network techniques: a case study in Malaysia. Water Air Soil Pollut, 225(8): 2063
https://doi.org/10.1007/s11270-014-2063-1
5 D J Baker, G Richards, A Grainger, P Gonzalez, S Brown, R Defries, A Held, J Kellndorfer, P Ndunda, D Ojima, P E Skrovseth, C Souza Jr, F Stolle (2010). Achieving forest carbon information with higher certainty: a five-part plan. Environ Sci Policy, 13(3): 249–260
https://doi.org/10.1016/j.envsci.2010.03.004
6 J Bian, A Gettelman, H Chen, L Pan (2007). Validation of satellite ozone profile retrievals using Beijing ozonesonde data. J Geophys Res, 112(D6): D06305
https://doi.org/10.1029/2006JD007502
7 A Bracher, L N Lamsal, M Weber, K Bramstedt, M Coldewey-Egbers, J P Burrows (2005). Global satellite validation of SCIAMACHY O3 columns with GOME WFMDOAS. Atmos Chem Phys, 5(9): 2357–2368
https://doi.org/10.5194/acp-5-2357-2005
8 M Buchwitz, R de Beek, J P Burrows, H Bovensmann, T Warneke, J Notholt, J F Meirink, A P H Goede, P Bergamaschi, S Körner, M Heimann, A Schulz (2005). Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models. Atmos Chem Phys, 5(4): 941–962
https://doi.org/10.5194/acp-5-941-2005
9 M Coldewey-Egbers, M Weber, L N Lamsal, R de Beek, M Buchwitz, J P Burrows (2005). Total ozone retrieval from GOME UV spectral data using the weighting function DOAS approach. Atmos Chem Phys, 5(4): 1015–1025
https://doi.org/10.5194/acp-5-1015-2005
10 C Dueñas, M C Fernández, S Cañete, J Carretero, E Liger (2004). Analyses of ozone in urban and rural sites in Málaga (Spain). Chemosphere, 56(6): 631–639
https://doi.org/10.1016/j.chemosphere.2004.04.013
11 C E Johnson, D S Stevenson, W J Collins, R G Derwent (2002). Interannual variability in methane growth rate simulated with a coupled Ocean-Atmosphere-Chemistry model. Geophys Res Lett, 29(19): doi: 10.1029/2002GL015269
12 A Lengyel, K Héberger, L Paksy, O Bánhidi, R Rajkó (2004). Prediction of ozone concentration in ambient air using multivariate methods. Chemosphere, 57(8): 889–896
https://doi.org/10.1016/j.chemosphere.2004.07.043
13 W Lin, X Xu, X Zhang, J Tang (2008). Contributions of pollutants from North China Plain to surface ozone at the Shangdianzi GAW Station. Atmos Chem Phys, 8(19): 5889–5898
https://doi.org/10.5194/acp-8-5889-2008
14 S Mieruch, S Noël, H Bovensmann, J P Burrows (2008). Analysis of global water vapour trends from satellite measurements in the visible spectral range. Atmos Chem Phys, 8(3): 491–504
https://doi.org/10.5194/acp-8-491-2008
15 D Omar (2009). Urban form and sustainability of a hot humid city of Kuala Lumpur. J Soc Sci, 8: 353–359
16 P Pochanart, J Kreasuwun, P Sukasem, W Geeratithadaniyom, M S Tabucanon, J Hirokawa, Y Kajii, H Akimoto (2001). Tropical tropospheric ozone observed in Thailand. Atmos Environ, 35(15): 2657–2668
https://doi.org/10.1016/S1352-2310(00)00441-6
17 J M Rajab, M Z MatJafri, H S Lim (2013). Combining multiple regression and principal component analysis for accurate predictions for column ozone in Peninsular Malaysia. Atmos Environ, 71: 36–43
https://doi.org/10.1016/j.atmosenv.2013.01.019
18 B S K Reddy, K R Kumar, G Balakrishnaiah, K R Gopal, R R Reddy, V Sivakumar, A P Lingaswamy, S Md Arafath, K Umadevi, S P Kumari, Y N Ahammed, S Lal (2012). Analysis of diurnal and seasonal behaviour of surface ozone and its precursor (NOx) at a semi-arid rural site in Southern India. Aerosol Air Qual Res, 12: 1081–1094
19 A Richter, J P Burrows, H Nüß, C Granier, U Niemeier (2005). Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 437(7055): 129–132
https://doi.org/10.1038/nature04092
20 A Richter, V Eyring, J P Burrows, H Bovensmann, A Lauer, B Sierk, P J Crutzen (2004). Satellite measurements of NO2 from international shipping emissions. Geophys Res Lett, 31(23): L23110
https://doi.org/10.1029/2004GL020822
21 O Schneising, M Buchwitz, J P Burrows, H Bovensmann, P Bergamaschi, W Peters (2008a). Three years of greenhouse gas column averaged dry air mole fractions retrieved from satellite-part 2: methane. Atmos Chem Phys, 8(3): 8273–8326
https://doi.org/10.5194/acpd-8-8273-2008
22 O Schneising, M Buchwitz, J P Burrows, H Bovensmann, M Reuter, J Notholt, R Macatangay, T Warneke (2008b). Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite − Part 1: carbon dioxide. Atmos Chem Phys, 8(14): 3827–3853
https://doi.org/10.5194/acp-8-3827-2008
23 M Statheropoulos, N Vassiliadis, A Pappa (1998). Principle component and canocical correlation analysis for examining air pollution and meteorological data. Atmos Environ, 32(6): 1087–1095
https://doi.org/10.1016/S1352-2310(97)00377-4
24 B B Stephens, K R Gurney, P P Tans, C Sweeney, W Peters, L Bruhwiler, P Ciais, M Ramonet, P Bousquet, T Nakazawa, S Aoki, T Machida, G Inoue, N Vinnichenko, J Lloyd, A Jordan, M Heimann, O Shibistova, R L Langenfelds, L P Steele, R J Francey, A S Denning (2007). Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316(5832): 1732–1735
https://doi.org/10.1126/science.1137004
25 K C Tan, H S Lim, M Z Mat Jafri (2012a). Total ozone column distribution over Peninsular Malaysia from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). Proceeding SPIE 8538, Earth Resources and Environmental Remote Sensing/GIS Applications III, 85380Y
https://doi.org/10.1117/12.974792
26 K C Tan, H S Lim, M Z Mat Jafri (2012b). Satellite observation distribution of atmospheric ozone over Peninsular Malaysia from SCIAMACHY. International Coference on Control System, Computing and Engineering (ICCSCE 2012), 238–243
27 K C Tan, H S Lim, M Z Mat Jafri (2013). Relationship between ozone and their air pollutants in Peninsular Malaysia for 2003 retrieved from SCIAMACHY. AIP Conf Proc, 1528: 151–156
https://doi.org/10.1063/1.4803586
28 K C Tan, H S Lim, M Z Mat Jafri (2014a). Analysis of total column ozone in Peninsular Malaysia retrieved from SCIAMACHY. Atmos Pollut Res, 5(1): 42–51
https://doi.org/10.5094/APR.2014.006
29 K C Tan, H S Lim, M Z Mat Jafri (2014b). Multiple regression analysis in modeling of columnar ozone in Peninsular Malaysia. Environ Sci Pollut Res Int, 21(12): 7567–7577
https://doi.org/10.1007/s11356-014-2697-y
30 K C Tan, H S Lim, M Z Mat Jafri. (2012c). Total ozone column distribution over Peninsular Malaysia from scanning imaging absorption spectrometer for atmospheric cartography (SCIAMACHY). Proc. SPIE 8538, Earth Resources and Environmental Remote Sensing/GIS Applications III, 85380Y (October 25, 2012),
https://doi.org/10.1117/12.97479
31 W Tian, M P Chipperfield, D Lü (2009). Impact of increasing stratospheric water vapor on ozone depletion and temperature change. Adv Atmos Sci, 26(3): 423–437
https://doi.org/10.1007/s00376-009-0423-3
32 Y Y Toh, S F Lim, Von R Glasow(2013). The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmos Environ, 70: 435–446
https://doi.org/10.1016/j.atmosenv.2013.01.018
33 O C Vaidya, G D Howell, D A Leger (2000). Evaluation of the distribution of mercury in lakes in Nova Scotia and Newfoundland. Water Air Soil Pollut, 117(1/4): 353–369
https://doi.org/10.1023/A:1005190429095
34 R Vingarzan (2004). A review of surface ozone background levels and trends. Atmos Environ, 38(21): 3431–3442
https://doi.org/10.1016/j.atmosenv.2004.03.030
35 Y S Wang, L Zhou, M X Wang, X H Zheng (2001). Trends of atmospheric methane in Beijing. Chemosphere, Glob Chang Sci, 3(1): 65–71
https://doi.org/10.1016/S1465-9972(00)00022-2
36 H W Y Wu, L Y Chan (2001). Surface ozone trends in Hong Kong in 1985–1995. Environ Int, 26(4): 213–222
https://doi.org/10.1016/S0160-4120(00)00108-2
37 S Yonemura, H Tsuruta, S Kawashima, S Sudo, C P Leong, S F Lim, J Zubaidi, H Masayasu (2002). Tropospheric ozone climatology over Peninsular Malaysia from 1992 to 1999. J Geophys Res, 107(D15): 4229
https://doi.org/10.1029/2001JD000993
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed