Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2018, Vol. 12 Issue (2): 444-456   https://doi.org/10.1007/s11707-017-0657-9
  本期目录
Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta
Jicai NING1(), Zhiqiang GAO1, Ran MENG2, Fuxiang XU1, Meng GAO1
1. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
2. Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
 全文: PDF(5218 KB)   HTML
Abstract

This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

Key wordsland surface temperature    mono-window algorithm    Yellow River Delta    land use change    vegetation index
收稿日期: 2016-10-17      出版日期: 2018-05-09
Corresponding Author(s): Jicai NING   
 引用本文:   
. [J]. Frontiers of Earth Science, 2018, 12(2): 444-456.
Jicai NING, Zhiqiang GAO, Ran MENG, Fuxiang XU, Meng GAO. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta. Front. Earth Sci., 2018, 12(2): 444-456.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-017-0657-9
https://academic.hep.com.cn/fesci/CN/Y2018/V12/I2/444
Fig.1  
Time seriesDate acquiredSatelliteSensorsThermal band used
A
(before wet season)
6/5/1986Landsat 5TMBand 6
5/31/1996Landsat 5TMBand 6
6/5/2015Landsat 8OLI/TIRSBand 10
B
(after wet season)
10/5/1984Landsat 5TMBand 6
10/2/2006Landsat 5TMBand 6
10/5/2013Landsat 8OLI/TIRSBand 10
Tab.1  
Fig.2  
Land cover type19862015
Area/km2Percentage/%Area/km2Percentage/%
Farmland6217.9055.186634.6456.08
Woodland65.910.5897.430.85
Grassland1772.9115.73194.341.69
Water194.261.72475.894.15
Built-up722.796.411117.7710.27
Saline-alkali field771.796.8576.790.67
Beaches906.258.04720.346.28
Salterns209.411.861512.4813.18
Aquaculture ponds73.200.65655.865.72
Wetland333.282.96127.941.12
Total11,267.69110011473.5100
Tab.2  
Land use
type
FarmlandWoodlandGrasslandWaterBuilt-upSaline-
alkali field
BeachesSalternsAquaculture
Ponds
WetlandYear 1986
Farmland5615.2810.355.56110.89160.733.04149.53137.5724.956217.90
Woodland21.4942.320.590.390.040.340.7465.91
Grassland621.362.5192.7853.96193.947.8989.64423.76251.3535.721772.91
Water29.882.671.35131.999.420.0411.520.981.924.48194.25
Built-up0.61722.090.09722.79
Saline-
alkali field
48.059.4062.8217.0833.5521.2567.79409.3096.923.79769.93
Beaches20.514.188.7934.8116.229.57315.61264.6891.6014.09780.06
Salterns2.0328.971.25174.902.25209.41
Aquaculture
ponds
8.540.640.410.1120.5738.344.5973.20
Wetland67.5026.018.1540.702.1033.7529.3452.2935.5837.86333.28
Year 20156434.6497.43180.08391.021167.5276.79513.901496.14655.86126.2411,139.63
Tab.3  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 Bhattacharya B K, Mallick K, Patel N K, Parihar J S (2010). Regional clear sky evapotranspiration over agricultural land using remote sensing data from Indian geostationary meteorological satellite. J Hydrol (Amst), 387(1‒2): 65–80
https://doi.org/10.1016/j.jhydrol.2010.03.030
2 Bi N H, Wang H J, Yang Z H (2014). Recent changes in the erosion–accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities. Cont Shelf Res, 90: 70–78
https://doi.org/10.1016/j.csr.2014.02.014
3 Blum M D, Roberts H H (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea–level rise. Nat Geosci, 2(7): 488–491
https://doi.org/10.1038/ngeo553
4 Brunsell N A (2006). Characterization of land–surface precipitation feedback regimes with remote sensing. Remote Sens Environ, 100(2): 200–211
https://doi.org/10.1016/j.rse.2005.10.025
5 Buyadi S N A, Mohd W M N W, Misni A (2013). Impact of land use changes on the surface temperature distribution of area surrounding the National Botanic Garden, Shah Alam. Procedia Soc Behav Sci, 101: 516–525
https://doi.org/10.1016/j.sbspro.2013.07.225
6 Chen X L, Zhao H M, Li P X, Yin Z Y (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ, 104(2): 133–146
https://doi.org/10.1016/j.rse.2005.11.016
7 Cheng K S, Su Y F, Kuo F T, Hung W C, Chiang J L (2008). Assessing the effect of landcover on air temperature using remote sensing images—A pilot study in northern Taiwan. Landsc Urban Plan, 85(2): 85–96
https://doi.org/10.1016/j.landurbplan.2007.09.014
8 Cui B S, Yang Q C, Yang Z F, Zhang K J (2009). Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol Eng, 35(7): 1090–1103
https://doi.org/10.1016/j.ecoleng.2009.03.022
9 Dash P, Göttsche F M , Olesen F S , Fischer H (2002). Land surface temperature and emissivity estimation from passive sensor data: theory and practice—current trends. Int J Remote Sens, 23(13): 2563–2594
https://doi.org/10.1080/01431160110115041
10 Fall S, Niyogi D, Gluhovsky A, Pielke R A Sr, Kalnay E, Rochon G (2010). Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. Int J Climatol, 30(13): 1980–1993
https://doi.org/10.1002/joc.1996
11 Friedl M A (2002). Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sens Environ, 79(2‒3): 344–354
https://doi.org/10.1016/S0034-4257(01)00284-X
12 Gao M S, Liu S, Zhao G M, Yuan H M, Wei C B, Wu Y H, Tang J H (2014). Vulnerability of eco-hydrological environment in the Yellow River Delta wetland. J Coast Res, 294(2): 344–350
https://doi.org/10.2112/JCOASTRES-D-13-00016.1
13 Huete A R (1988). A soil-adjusted vegetation index (SAVI). Remote Sens Environ, 25(3): 295–309
https://doi.org/10.1016/0034-4257(88)90106-X
14 Jimenez-Munoz J C, Sobrino J A, Skokovic D, Mattar C, Cristobal J (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci Remote Sens Lett, 11(10): 1840–1843
https://doi.org/10.1109/LGRS.2014.2312032
15 Jin Y, Yang W, Sun T, Yang Z, Li M (2016). Effects of seashore reclamation activities on the health of wetland ecosystems: a case study in the Yellow River Delta, China. Ocean Coast Manage, 123: 44–52
https://doi.org/10.1016/j.ocecoaman.2016.01.013
16 Kong D X, Miao C Y, Borthwick A G L, Duan Q Y, Liu H, Sun Q H, Ye A Z, Di Z H, Gong W (2015). Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. J Hydrol (Amst), 520: 157–167
https://doi.org/10.1016/j.jhydrol.2014.09.038
17 Kumar D, Shekhar S (2015). Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing. Ecotoxicol Environ Saf, 121: 39–44
https://doi.org/10.1016/j.ecoenv.2015.07.004
18 Li Z L, Tang B H, Wu H, Ren H, Yan G, Wan Z, Trigo I F, Sobrino J A (2013). Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ, 131(8): 14–37
https://doi.org/10.1016/j.rse.2012.12.008
19 Liang S, Fang H, Morisette J T, Chen M, Shuey C J, Walthall C (2002). Atmospheric correction of Landsat ETM+ land surface imagery: II. validation and applications. IEEE Transactions on Geoscience & Remote Sensing, 40(12): 1–10
20 Liu Z Y, Huang J F, Wang F M, Wang Y (2008). Adjusted-Normalized Difference Vegetation Index for estimating leaf area index of rice. Scientia Agricultura Sinica, 41(10): 3350–3356
21 Lv Z Q, Zhou Q G (2011). Utility of Landsat image in the study of land cover and land surface temperature change. Procedia Environ Sci, 10(1): 1287–1292
https://doi.org/10.1016/j.proenv.2011.09.206
22 Mroz M, Sobieraj A (2004). Comparison of several vegetation indices calculated on the basis of a seasonal SPOT XS time series, and their suitability for land cover and agricultural crop identification. Technical Sciences, 7: 39–66
23 Ottinger M, Kuenzer C, Liu G, Wang S, Dech S (2013). Monitoring land cover dynamics in the Yellow River Delta from 1995 to 2010 based on Landsat 5 TM. Appl Geogr, 44(4): 53–68
https://doi.org/10.1016/j.apgeog.2013.07.003
36 Pal S, SkZiaul (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt J Remote Sens Space Sci, 20(1): 125–145
24 Petropoulos G P, Griffiths H M, Kalivas D P (2014). Quantifying spatial and temporal vegetation recovery dynamics following a wildfire event in a Mediterranean landscape using EO data and GIS. Appl Geogr, 50(2): 120–131
https://doi.org/10.1016/j.apgeog.2014.02.006
25 Pielke R A Sr, Avissar R, Raupach M, Dolman A J, Zeng X, Denning A S (1998). Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Change Biol, 4(5): 461–475
https://doi.org/10.1046/j.1365-2486.1998.t01-1-00176.x
26 Pu R, Gong P, Michishita R, Sasagawa T (2006). Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sens Environ, 104(2): 211–225
https://doi.org/10.1016/j.rse.2005.09.022
27 Qi J, Chehbouni A, Huete A R, Kerr Y H, Sorooshian S (1994). A modified soil adjusted vegetation index. Remote Sens Environ, 48(2): 119–126
https://doi.org/10.1016/0034-4257(94)90134-1
28 Qin Z, Karnieli A, Berliner P (2001a). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egypt border region. Int J Remote Sens, 22(18): 3719–3746
https://doi.org/10.1080/01431160010006971
29 Qin Z, Li W, Xu B, Chen Z X, Liu J (2004). The estimation of land surface emissivity for Landsat TM6. Remote Sensing for Land & Resources, 16(3): 28–41
30 Qin Z, Zhang M, Karnieli A, Berliner P (2001b). Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data. Acta Geogr Sin, 56(4): 456–466
31 Rhee J, Park S, Lu Z (2014). Relationship between land cover patterns and surface temperature in urban areas. Geoscience & Remote Sensing, 51(5): 521–536
https://doi.org/10.1080/15481603.2014.964455
32 Rozenstein O, Qin Z, Derimian Y, Karnieli A (2014). Derivation of land surface temperature for Landsat-8 TIRS using a split-window algorithm. Sensors (Basel), 14(4): 5768–5780
https://doi.org/10.3390/s140405768
33 Sahana M, Ahmed R, Sajjad H (2016). Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in sundarban biosphere reserve, india. Modeling Earth Systems and Environment, 2(2): 81
https://doi.org/10.1007/s40808-016-0135-5
34 Schwarz N, Schlink U, Franck U, Großmann K (2012). Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol Indic, 18(4): 693–704
https://doi.org/10.1016/j.ecolind.2012.01.001
35 Sobrino J A, Jiménez–Muñoz J CPaolini L (2004). Land surface temperature retrieval from Landsat TM 5. Remote Sens Environ, 90(4): 434–440
https://doi.org/10.1016/j.rse.2004.02.003
37 Syvitski J P M, Kettner A J, Overeem I, Hutton E W H, Hannon M T, Brakenridge G R, Day J, Vorosmarty C, Saito Y, Giosan L, Nicholls R J (2009). Sinking deltas due to human activities. Nat Geosci, 2(10): 681–686
https://doi.org/10.1038/ngeo629
38 USGS (2014). Landsat 8 reprocessing to begin February 3, 2014.
39 Wang H J, Yang Z S, Saito Y, Liu J P, Sun X X (2006). Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: connections to impacts from ENSO events and dams. Global Planet Change, 50(3‒4): 212–225
https://doi.org/10.1016/j.gloplacha.2006.01.005
40 Wang S, Ma Q, Ding H, Liang H (2016). Detection of urban expansion and land surface temperature change using multi-temporal Landsat images. Resour Conserv Recycling, doi: 10.1016/j.resconrec.2016.05.011
41 Wei M A, Zhou J (2011). Quantitative analysis of land surface temperature–vegetation indexes relationship based on remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b. Beijing
42 Weng Q, Lu D, Schubring J (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ, 89(4): 467–483
https://doi.org/10.1016/j.rse.2003.11.005
43 Windahl E, Beurs K D (2016). An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature. Int J Appl Earth Obs Geoinf, 51: 11–27
https://doi.org/10.1016/j.jag.2016.04.003
44 Yokohari M, Brown R D, Kato Y, Yamamoto S (2001). The cooling effect of paddy fields on summertime air temperature in residential Tokyo, Japan. Landsc Urban Plan, 53(1‒4): 17–27
https://doi.org/10.1016/S0169-2046(00)00123-7
45 Yu X, Guo X, Wu Z (2014). Land surface temperature retrieval from Landsat 8 TIRS—comparison between radiative transfer equation-based method, split-window algorithm and single-channel method. Remote Sens, 6(10): 9829–9852
https://doi.org/10.3390/rs6109829
46 Yue W, Xu J, Tan W, Xu L (2007). The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. Int J Remote Sens, 28(15): 3205–3226
https://doi.org/10.1080/01431160500306906
47 Zhang H, Chen X, Luo Y (2016). An overview of ecohydrology of the Yellow River delta wetland. Ecohydrology & Hydrobiology, 16(1): 39–44
https://doi.org/10.1016/j.ecohyd.2015.10.001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed