Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta
Jicai NING1(), Zhiqiang GAO1, Ran MENG2, Fuxiang XU1, Meng GAO1
1. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China 2. Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.
. [J]. Frontiers of Earth Science, 2018, 12(2): 444-456.
Jicai NING, Zhiqiang GAO, Ran MENG, Fuxiang XU, Meng GAO. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta. Front. Earth Sci., 2018, 12(2): 444-456.
Bhattacharya B K, Mallick K, Patel N K, Parihar J S (2010). Regional clear sky evapotranspiration over agricultural land using remote sensing data from Indian geostationary meteorological satellite. J Hydrol (Amst), 387(1‒2): 65–80 https://doi.org/10.1016/j.jhydrol.2010.03.030
2
Bi N H, Wang H J, Yang Z H (2014). Recent changes in the erosion–accretion patterns of the active Huanghe (Yellow River) delta lobe caused by human activities. Cont Shelf Res, 90: 70–78 https://doi.org/10.1016/j.csr.2014.02.014
3
Blum M D, Roberts H H (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea–level rise. Nat Geosci, 2(7): 488–491 https://doi.org/10.1038/ngeo553
4
Brunsell N A (2006). Characterization of land–surface precipitation feedback regimes with remote sensing. Remote Sens Environ, 100(2): 200–211 https://doi.org/10.1016/j.rse.2005.10.025
5
Buyadi S N A, Mohd W M N W, Misni A (2013). Impact of land use changes on the surface temperature distribution of area surrounding the National Botanic Garden, Shah Alam. Procedia Soc Behav Sci, 101: 516–525 https://doi.org/10.1016/j.sbspro.2013.07.225
6
Chen X L, Zhao H M, Li P X, Yin Z Y (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ, 104(2): 133–146 https://doi.org/10.1016/j.rse.2005.11.016
7
Cheng K S, Su Y F, Kuo F T, Hung W C, Chiang J L (2008). Assessing the effect of landcover on air temperature using remote sensing images—A pilot study in northern Taiwan. Landsc Urban Plan, 85(2): 85–96 https://doi.org/10.1016/j.landurbplan.2007.09.014
8
Cui B S, Yang Q C, Yang Z F, Zhang K J (2009). Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol Eng, 35(7): 1090–1103 https://doi.org/10.1016/j.ecoleng.2009.03.022
9
Dash P, Göttsche F M , Olesen F S , Fischer H (2002). Land surface temperature and emissivity estimation from passive sensor data: theory and practice—current trends. Int J Remote Sens, 23(13): 2563–2594 https://doi.org/10.1080/01431160110115041
10
Fall S, Niyogi D, Gluhovsky A, Pielke R A Sr, Kalnay E, Rochon G (2010). Impacts of land use land cover on temperature trends over the continental United States: assessment using the North American Regional Reanalysis. Int J Climatol, 30(13): 1980–1993 https://doi.org/10.1002/joc.1996
11
Friedl M A (2002). Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sens Environ, 79(2‒3): 344–354 https://doi.org/10.1016/S0034-4257(01)00284-X
12
Gao M S, Liu S, Zhao G M, Yuan H M, Wei C B, Wu Y H, Tang J H (2014). Vulnerability of eco-hydrological environment in the Yellow River Delta wetland. J Coast Res, 294(2): 344–350 https://doi.org/10.2112/JCOASTRES-D-13-00016.1
Jimenez-Munoz J C, Sobrino J A, Skokovic D, Mattar C, Cristobal J (2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci Remote Sens Lett, 11(10): 1840–1843 https://doi.org/10.1109/LGRS.2014.2312032
15
Jin Y, Yang W, Sun T, Yang Z, Li M (2016). Effects of seashore reclamation activities on the health of wetland ecosystems: a case study in the Yellow River Delta, China. Ocean Coast Manage, 123: 44–52 https://doi.org/10.1016/j.ocecoaman.2016.01.013
16
Kong D X, Miao C Y, Borthwick A G L, Duan Q Y, Liu H, Sun Q H, Ye A Z, Di Z H, Gong W (2015). Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. J Hydrol (Amst), 520: 157–167 https://doi.org/10.1016/j.jhydrol.2014.09.038
17
Kumar D, Shekhar S (2015). Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing. Ecotoxicol Environ Saf, 121: 39–44 https://doi.org/10.1016/j.ecoenv.2015.07.004
18
Li Z L, Tang B H, Wu H, Ren H, Yan G, Wan Z, Trigo I F, Sobrino J A (2013). Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ, 131(8): 14–37 https://doi.org/10.1016/j.rse.2012.12.008
19
Liang S, Fang H, Morisette J T, Chen M, Shuey C J, Walthall C (2002). Atmospheric correction of Landsat ETM+ land surface imagery: II. validation and applications. IEEE Transactions on Geoscience & Remote Sensing, 40(12): 1–10
20
Liu Z Y, Huang J F, Wang F M, Wang Y (2008). Adjusted-Normalized Difference Vegetation Index for estimating leaf area index of rice. Scientia Agricultura Sinica, 41(10): 3350–3356
21
Lv Z Q, Zhou Q G (2011). Utility of Landsat image in the study of land cover and land surface temperature change. Procedia Environ Sci, 10(1): 1287–1292 https://doi.org/10.1016/j.proenv.2011.09.206
22
Mroz M, Sobieraj A (2004). Comparison of several vegetation indices calculated on the basis of a seasonal SPOT XS time series, and their suitability for land cover and agricultural crop identification. Technical Sciences, 7: 39–66
23
Ottinger M, Kuenzer C, Liu G, Wang S, Dech S (2013). Monitoring land cover dynamics in the Yellow River Delta from 1995 to 2010 based on Landsat 5 TM. Appl Geogr, 44(4): 53–68 https://doi.org/10.1016/j.apgeog.2013.07.003
36
Pal S, SkZiaul (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt J Remote Sens Space Sci, 20(1): 125–145
24
Petropoulos G P, Griffiths H M, Kalivas D P (2014). Quantifying spatial and temporal vegetation recovery dynamics following a wildfire event in a Mediterranean landscape using EO data and GIS. Appl Geogr, 50(2): 120–131 https://doi.org/10.1016/j.apgeog.2014.02.006
25
Pielke R A Sr, Avissar R, Raupach M, Dolman A J, Zeng X, Denning A S (1998). Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate. Glob Change Biol, 4(5): 461–475 https://doi.org/10.1046/j.1365-2486.1998.t01-1-00176.x
26
Pu R, Gong P, Michishita R, Sasagawa T (2006). Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sens Environ, 104(2): 211–225 https://doi.org/10.1016/j.rse.2005.09.022
27
Qi J, Chehbouni A, Huete A R, Kerr Y H, Sorooshian S (1994). A modified soil adjusted vegetation index. Remote Sens Environ, 48(2): 119–126 https://doi.org/10.1016/0034-4257(94)90134-1
28
Qin Z, Karnieli A, Berliner P (2001a). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel–Egypt border region. Int J Remote Sens, 22(18): 3719–3746 https://doi.org/10.1080/01431160010006971
29
Qin Z, Li W, Xu B, Chen Z X, Liu J (2004). The estimation of land surface emissivity for Landsat TM6. Remote Sensing for Land & Resources, 16(3): 28–41
30
Qin Z, Zhang M, Karnieli A, Berliner P (2001b). Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data. Acta Geogr Sin, 56(4): 456–466
31
Rhee J, Park S, Lu Z (2014). Relationship between land cover patterns and surface temperature in urban areas. Geoscience & Remote Sensing, 51(5): 521–536 https://doi.org/10.1080/15481603.2014.964455
32
Rozenstein O, Qin Z, Derimian Y, Karnieli A (2014). Derivation of land surface temperature for Landsat-8 TIRS using a split-window algorithm. Sensors (Basel), 14(4): 5768–5780 https://doi.org/10.3390/s140405768
33
Sahana M, Ahmed R, Sajjad H (2016). Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in sundarban biosphere reserve, india. Modeling Earth Systems and Environment, 2(2): 81 https://doi.org/10.1007/s40808-016-0135-5
34
Schwarz N, Schlink U, Franck U, Großmann K (2012). Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol Indic, 18(4): 693–704 https://doi.org/10.1016/j.ecolind.2012.01.001
35
Sobrino J A, Jiménez–Muñoz J CPaolini L (2004). Land surface temperature retrieval from Landsat TM 5. Remote Sens Environ, 90(4): 434–440 https://doi.org/10.1016/j.rse.2004.02.003
37
Syvitski J P M, Kettner A J, Overeem I, Hutton E W H, Hannon M T, Brakenridge G R, Day J, Vorosmarty C, Saito Y, Giosan L, Nicholls R J (2009). Sinking deltas due to human activities. Nat Geosci, 2(10): 681–686 https://doi.org/10.1038/ngeo629
38
USGS (2014). Landsat 8 reprocessing to begin February 3, 2014.
39
Wang H J, Yang Z S, Saito Y, Liu J P, Sun X X (2006). Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: connections to impacts from ENSO events and dams. Global Planet Change, 50(3‒4): 212–225 https://doi.org/10.1016/j.gloplacha.2006.01.005
40
Wang S, Ma Q, Ding H, Liang H (2016). Detection of urban expansion and land surface temperature change using multi-temporal Landsat images. Resour Conserv Recycling, doi: 10.1016/j.resconrec.2016.05.011
41
Wei M A, Zhou J (2011). Quantitative analysis of land surface temperature–vegetation indexes relationship based on remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B6b. Beijing
42
Weng Q, Lu D, Schubring J (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ, 89(4): 467–483 https://doi.org/10.1016/j.rse.2003.11.005
43
Windahl E, Beurs K D (2016). An intercomparison of Landsat land surface temperature retrieval methods under variable atmospheric conditions using in situ skin temperature. Int J Appl Earth Obs Geoinf, 51: 11–27 https://doi.org/10.1016/j.jag.2016.04.003
44
Yokohari M, Brown R D, Kato Y, Yamamoto S (2001). The cooling effect of paddy fields on summertime air temperature in residential Tokyo, Japan. Landsc Urban Plan, 53(1‒4): 17–27 https://doi.org/10.1016/S0169-2046(00)00123-7
45
Yu X, Guo X, Wu Z (2014). Land surface temperature retrieval from Landsat 8 TIRS—comparison between radiative transfer equation-based method, split-window algorithm and single-channel method. Remote Sens, 6(10): 9829–9852 https://doi.org/10.3390/rs6109829
46
Yue W, Xu J, Tan W, Xu L (2007). The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. Int J Remote Sens, 28(15): 3205–3226 https://doi.org/10.1080/01431160500306906
47
Zhang H, Chen X, Luo Y (2016). An overview of ecohydrology of the Yellow River delta wetland. Ecohydrology & Hydrobiology, 16(1): 39–44 https://doi.org/10.1016/j.ecohyd.2015.10.001