Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

邮发代号 80-963

2019 Impact Factor: 1.62

Frontiers of Earth Science  2023, Vol. 17 Issue (4): 920-932   https://doi.org/10.1007/s11707-022-1069-z
  本期目录
Changes in lake area and water level in response to hydroclimate variations in the source area of the Yellow River: a case study from Lake Ngoring
Yang PU1(), Min ZHAN1, Xiaohua SHAO1, Josef P. WERNE2, Philip A. MEYERS3, Jiaojiao YAO1, Da ZHI1
1. School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
2. Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh PA 15260, USA
3. Department of Earth and Environmental Sciences, The University of Michigan, Ann Arbor MI 48109, USA
 全文: PDF(34229 KB)   HTML
Abstract

In the north-eastern Qinghai-Tibet Plateau (QTP), the source area of the Yellow River (SAYR) has been experiencing significant changes in climatic and environmental conditions in recent decades. To date, few studies have combined modern hydrological conditions with paleoclimate records to explore the mechanism(s) of these changes. This study seeks to improve understanding of hydrological variability on decadal and centennial timescales in the SAYR and to identify its general cause. We first determined annual fluctuations in the surface area of Lake Ngoring from 1985 to 2020 using multi-temporal Landsat images. The results show that lake surface area changes were generally consistent with variations in precipitation, streamflow and the regional dry-wet index in the SAYR, suggesting that the water balance of the Lake Ngoring area is closely associated with regional hydroclimate changes. These records are also comparable to the stalagmite δ18O monsoon record, as well fluctuations in the Southern Oscillation Index (SOI). Moreover, an association of high TSI (total solar insolation) anomalies and sunspot numbers with the expansion of Lake Ngoring surface area is observed, implying that solar activity is the key driving factor for hydrologic variability in the SAYR on a decadal timescale. Following this line of reasoning, we compared the δ13Corg-based lake level fluctuations of Lake Ngoring for the last millennium, as previously reported, with the hydroclimatic history and the reconstructed TSI record. We conclude that the hydrological regime of Lake Ngoring has been mainly controlled by centennial fluctuations in precipitation for the last millennium, which is also dominated by solar activity. In general, it appears that solar activity has exerted a dominant influence on the hydrological regime of the SAYR on both decadal and centennial timescales, which is clearly manifested in the variations of lake area and water level of Lake Ngoring.

Key wordsQinghai-Tibet Plateau (QTP)    source area of the Yellow River (SAYR)    lake area/level    Asian summer monsoon (ASM)    El Niño-Southern    Oscillation (ENSO)    total solar insolation (TSI)
收稿日期: 2022-10-28      出版日期: 2024-02-06
Corresponding Author(s): Yang PU   
 引用本文:   
. [J]. Frontiers of Earth Science, 2023, 17(4): 920-932.
Yang PU, Min ZHAN, Xiaohua SHAO, Josef P. WERNE, Philip A. MEYERS, Jiaojiao YAO, Da ZHI. Changes in lake area and water level in response to hydroclimate variations in the source area of the Yellow River: a case study from Lake Ngoring. Front. Earth Sci., 2023, 17(4): 920-932.
 链接本文:  
https://academic.hep.com.cn/fesci/CN/10.1007/s11707-022-1069-z
https://academic.hep.com.cn/fesci/CN/Y2023/V17/I4/920
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
ItemLake areaPrecipitationStreamflowSPISOITSI
Lake area1.00
Precipitation0.471.00
Streamflow0.520.651.00
SPI0.420.720.441.00
SOI0.240.010.220.121.00
TSI?0.09?0.180.03?0.390.241.00
Tab.1  
Fig.7  
Fig.8  
Fig.9  
1 Z, An S M, Colman W, Zhou X, Li E T, Brown A J T, Jull Y, Cai Y, Huang X, Lu H, Chang Y, Song Y, Sun H, Xu W, Liu Z, Jin X, Liu P, Cheng Y, Liu L, Ai X, Li X, Liu L, Yan Z, Shi X, Wang F, Wu X, Qiang J, Dong F, Lu X Xu (2012). Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka.Sci Rep, 2(1): 619
https://doi.org/10.1038/srep00619
2 F, Fathian Z, Dehghan M H, Bazrkar S Eslamian (2016). Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran.Hydrol Sci J, 61: 892–904
https://doi.org/10.1080/02626667.2014.932911
3 X, Gu J, Si S, Lu Z, Gui D, Xie Z, Zhao S, Li H, Li Q You (2019). Analysis of dry and wet change characteristics of source region of the Yellow River in historical period.Jiangsu Agric Sci, 47(23): 307–312 (in Chinese)
4 B, Guo C, Wei Y, Yu Y, Liu J, Li C, Meng Y Cai (2022). The dominant influencing factors of desertification changes in the source region of Yellow River: climate change or human activity?.Sci Total Environ, 813: 152512
https://doi.org/10.1016/j.scitotenv.2021.152512
5 A C G, Henderson J A, Holmes J, Zhang M J, Leng L R Carvalho (2003). A carbon- and oxygen- isotope record of recent environmental change from Qinghai Lake, NE Tibetan Plateau.Chin Sci Bull, 48(14): 1463–1468
https://doi.org/10.1360/02wd0272
6 Y, He W, Liu C, Zhao Z, Wang H, Wang Y, Liu X, Qin Q, Hu Z, An Z Liu (2013). Solar influenced late Holocene temperature changes on the northern Tibetan Plateau.Chin Sci Bull, 58(9): 1053–1059
https://doi.org/10.1007/s11434-012-5619-8
7 Y, Hu S, Maskey S, Uhlenbrook H Zhao (2011). Streamflow trends and climate linkages in the source region of the Yellow River, China.Hydrol Processes, 25(22): 3399–3411
https://doi.org/10.1002/hyp.8069
8 J, Jiang B, Meng H, Liu H, Wang M, Kolpakova S, Krivonogov M, Song A, Zhou W, Liu Z Liu (2021). Water depth control on n-alkane distribution and organic carbon isotope in mid-latitude Asian lakes.Chem Geol, 565: 120070
https://doi.org/10.1016/j.chemgeo.2021.120070
9 H, Jin R, He G, Cheng Q, Wu S, Wang L, Lü X Chang (2009). Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts.Environ Res Lett, 4(4): 045206
https://doi.org/10.1088/1748-9326/4/4/045206
10 S, Kang Y, Xu Q, You W A, Flügel N, Pepin T Yao (2010). Review of climate and cryospheric change in the Tibetan Plateau.Environ Res Lett, 5(1): 015101
https://doi.org/10.1088/1748-9326/5/1/015101
11 K, Khosravi A, Golkarian A M, Melesse R C Deo (2022). Suspended sediment load modeling using advanced hybrid rotation forest based elastic network approach.J Hydrol (Amst), 610: 127963
https://doi.org/10.1016/j.jhydrol.2022.127963
12 G, Kirillin L, Wen T Shatwell (2017). Seasonal thermal regime and climatic trends in lakes of the Tibetan highlands.Hydrol Earth Syst Sci, 21(4): 1895–1909
https://doi.org/10.5194/hess-21-1895-2017
13 Y, Lei K, Yang B, Wang Y, Sheng B W, Bird G, Zhang L Tian (2014). Response of inland lake dynamics over the Tibetan Plateau to climate change.Clim Change, 125(2): 281–290
https://doi.org/10.1007/s10584-014-1175-3
14 Y, Lei T, Yao B W, Bird K, Yang J, Zhai Y Sheng (2013). Coherent lake growth on the central Tibetan Plateau since the 1970s: characterization and attribution.J Hydrol (Amst), 483: 61–67
https://doi.org/10.1016/j.jhydrol.2013.01.003
15 Y, Lei Y, Zhu B, Wang T, Yao K, Yang X, Zhang J, Zhai N Ma (2019). Extreme lake level changes on the Tibetan Plateau associated with the 2015/2016 El Niño.Geophys Res Lett, 46(11): 5889–5898
https://doi.org/10.1029/2019GL081946
16 Q, Li M, Yang G, Wan X Wang (2016). Spatial and temporal precipitation variability in the source region of the Yellow River.Environ Earth Sci, 75(7): 594
https://doi.org/10.1007/s12665-016-5583-8
17 G S, Lister K, Kelts C K, Zao J Q, Yu F Niessen (1991). Lake Qinghai, China: closed basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene.Palaeogeogr Palaeoclimatol Palaeoecol, 84(1–4): 141–162
https://doi.org/10.1016/0031-0182(91)90041-O
18 C, Liu Y Zeng (2004). Changes of pan evaporation in the recent 40 years in the Yellow River Basin.Water Int, 29(4): 510–516
https://doi.org/10.1080/02508060408691814
19 J, Liu S, Wang S, Yu D, Yang L Zhang (2009). Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau.Global Planet Change, 67(3–4): 209–217
https://doi.org/10.1016/j.gloplacha.2009.03.010
20 S, Liu A, Duan G Wu (2020). Asymmetrical response of the east Asian summer monsoon to the quadrennial oscillation of global sea surface temperature associated with the Tibetan Plateau thermal feedback.J Geophys Res: Atmos, 125(20): e2019JD032129
https://doi.org/10.1029/2019JD032129
21 W, Liu X, Li Z, An L, Xu Q Zhang (2013). Total organic carbon isotopes: a novel proxy of lake level from Lake Qinghai in the Qinghai-Tibet Plateau, China.Chem Geol, 347: 153–160
https://doi.org/10.1016/j.chemgeo.2013.04.009
22 D, Luo H, Jin V F, Bense X, Jin X Li (2020). Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the headwater area of the Yellow River, Tibetan Plateau.Geoderma, 376(D5): 114531
https://doi.org/10.1016/j.geoderma.2020.114531
23 M Magny (1993). Solar influences on Holocene climatic changes illustrated by correlations between past lake-level fluctuations and the atmospheric 14c record.Quat Res, 40(1): 1–9
https://doi.org/10.1006/qres.1993.1050
24 H B Mann (1945). Non-parametric tests against trend.Econometrica, 13(3): 245–259
https://doi.org/10.2307/1907187
25 I, Mason M, Guzkowska C, Rapley F Street-Perrott (1994). The response of lake levels and areas to climatic change.Clim Change, 27(2): 161–197
https://doi.org/10.1007/BF01093590
26 S K McFeeters (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features.Int J Remote Sens, 17(7): 1425–1432
https://doi.org/10.1080/01431169608948714
27 T B McKee, N J Doesken, J R Kleist (1993). The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, 179–183
28 F, Meng F, Su D, Yang K, Tong Z Hao (2016). Impacts of recent climate change on the hydrology in the source region of the Yellow River basin.J Hydrol Reg Stud, 6: 66–81
https://doi.org/10.1016/j.ejrh.2016.03.003
29 G, Ming W, Zhou P, Cheng H, Wang F, Xian Y, Fu S, Wu H Du (2020). Lacustrine record from the eastern Tibetan Plateau associated with Asian summer monsoon changes over the past ~ 6 ka and its links with solar and ENSO activity.Clim Dyn, 55(5–6): 1075–1086
https://doi.org/10.1007/s00382-020-05312-4
30 C, Morrill J T, Overpeck J E, Cole K, Liu C, Shen L Tang (2006). Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet.Quat Res, 65(2): 232–243
https://doi.org/10.1016/j.yqres.2005.02.014
31 D, Ning Q, Jiang M, Ji J, Zheng X, Kuai Y, Ge Y, Xu L, Cheng W Zhao (2022). Sedimentary black carbon isotope record of Holocene climate changes on the northeastern Tibetan Plateau.Paleoceanogr Paleoclimatol, 37(8): e2022PA004487
https://doi.org/10.1029/2022PA004487
32 Y, Pu J P, Werne P A, Meyers H Zhang (2020). Organic matter geochemical signatures of sediments of Lake Ngoring (Qinghai-Tibetan Plateau): a record of environmental and climatic changes in the source area of the Yellow River for the last 1500 years.Palaeogeogr Palaeoclimatol Palaeoecol, 551: 109729
https://doi.org/10.1016/j.palaeo.2020.109729
33 Y, Pu H, Zhang G, Lei F, Chang M, Yang X Huang (2009). n-alkane distribution coupled with organic carbon isotope composition in the shell bar section, Qarhan paleolake, Qaidam Basin, NE Tibetan Plateau.Front Earth Sci China, 3(3): 327–335
https://doi.org/10.1007/s11707-009-0044-2
34 Y, Pu H, Zhang G, Lei F, Chang M, Yang W, Zhang Y, Lei L, Yang Y Pang (2010). Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3.Sci China Earth Sci, 53(6): 863–870
https://doi.org/10.1007/s11430-010-0075-2
35 C F, Ropelewski M S Halpert (1986). North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO).Mon Weather Rev, 114(12): 2352–2362
https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2
36 P R, Sheppard P E, Tarasov L J, Graumlich K U, Heussner M, Wagner H, Österle L G Thompson (2004). Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China.Clim Dyn, 23(7): 869–881
https://doi.org/10.1007/s00382-004-0473-2
37 C, Song B, Huang L, Ke K S Richards (2014). Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts.J Hydrol (Amst), 514: 131–144
https://doi.org/10.1016/j.jhydrol.2014.04.018
38 J C, Stager A, Ruzmaikin D, Conway P, Verburg P J Mason (2007). Sunspots, El Niño, and the levels of Lake Victoria, East Africa.J Geophys Res, 112(D15): D15106
https://doi.org/10.1029/2006JD008362
39 L, Tan Y, Cai L, Yi Z, An L Ai (2008). Precipitation variations of Longxi, northeast margin of Tibetan Plateau since AD 960 and their relationship with solar activity.Clim Past, 4(1): 19–28
https://doi.org/10.5194/cp-4-19-2008
40 F, Tian Y, Wang J, Dong L, Yuan W Tang (2022). An 1800-year record of lake level and climate change from alkaline lakes in southern Inner Mongolia, China.J Paleolimnol, 67(1): 59–73
https://doi.org/10.1007/s10933-021-00221-w
41 H, Tian Y, Lan J, Wen H, Jin C, Wang X, Wang Y Kang (2015). Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts.J Geogr Sci, 25(6): 643–668
https://doi.org/10.1007/s11442-015-1194-7
42 M, Tian J, Zhao J, Wang T Li (2021). Runoff simulation of snowmelt in the Huangheyan-Dari district of the source region of the Yellow River based on UEB model.J Qinghai Univ, 39(02): 98–104 (in Chinese)
43 L E A, Vieira S K, Solanki N A, Krivova I G Usoskin (2011). Evolution of the solar irradiance during the Holocene.Astron Astrophys, 531: A6
https://doi.org/10.1051/0004-6361/201015843
44 D E, Walling D Fang (2003). Recent trends in the suspended sediment loads of the world’s rivers.Global Planet Change, 39(1–2): 111–126
https://doi.org/10.1016/S0921-8181(03)00020-1
45 S, Wan Y, Hu Z, You J, Kang J Zhu (2013). Extreme monthly precipitation pattern in China and its dependence on Southern Oscillation.Intern J Climat, 33(4): 806–814
https://doi.org/10.1002/joc.3466
46 H, Wang Y, He W, Liu A, Zhou M, Kolpakova S, Krivonogov Z Liu (2019). Lake water depth controlling archaeal tetraether distributions in Midlatitude Asia: implications for paleo lake-level reconstruction.Geophys Res Lett, 46(10): 5274–5283
https://doi.org/10.1029/2019GL082157
47 J, Wu Z, Yu H, Zeng N Wang (2009). Possible solar forcing of 400-year wet-dry climate cycles in northwestern China.Clim Change, 96(4): 473–482
https://doi.org/10.1007/s10584-009-9604-4
48 H Xu (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.Int J Remote Sens, 27(14): 3025–3033
https://doi.org/10.1080/01431160600589179
49 J Xu (2018). A cave δ18O based 1800-year reconstruction of sediment load and streamflow: the Yellow River source area.Catena, 161: 137–147
https://doi.org/10.1016/j.catena.2017.09.028
50 G, Zhang W, Chen H Xie (2019a). Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat missions.Geophys Res Lett, 46(22): 13107–13118
https://doi.org/10.1029/2019GL085032
51 G, Zhang W, Luo W, Chen G Zheng (2019b). A robust but variable lake expansion on the Tibetan Plateau.Sci Bull (Beijing), 64(18): 1306–1309
https://doi.org/10.1016/j.scib.2019.07.018
52 G, Zhang T, Yao C K, Shum S, Yi K, Yang H, Xie W, Feng T, Bolch L, Wang A, Behrangi H, Zhang W, Wang Y, Xiang J Yu (2017). Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin.Geophys Res Lett, 44(11): 5550–5560
https://doi.org/10.1002/2017GL073773
53 G, Zhang T, Yao H, Xie K, Yang L, Zhu C K, Shum T, Bolch S, Yi S, Allen L, Jiang W, Chen C Ke (2020). Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms.Earth Sci Rev, 208: 103269
https://doi.org/10.1016/j.earscirev.2020.103269
54 P, Zhang H, Cheng R L, Edwards F, Chen Y, Wang X, Yang J, Liu M, Tan X, Wang J, Liu C, An Z, Dai J, Zhou D, Zhang J, Jia L, Jin K R Johnson (2008). A test of climate, sun, and culture relationships from an 1810-year Chinese cave record.Science, 322(5903): 940–942
https://doi.org/10.1126/science.1163965
55 N, Zhao H, Yan Y, Yang C, Liu X, Ma G, Wang P, Zhou H, Wen X, Qu J Dodson (2021). A 23.7-year long daily growth rate record of a modern giant clam shell from South China Sea and its potential in high-resolution paleoclimate reconstruction.Palaeogeogr Palaeoclimatol Palaeoecol, 583: 110682
https://doi.org/10.1016/j.palaeo.2021.110682
56 H, Zheng L, Zhang R, Zhu C, Liu Y, Sato Y Fukushima (2009). Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin.Water Resour Res, 45(7): W00A19
https://doi.org/10.1029/2007WR006665
57 J Zheng, Y Wen (2020). Dataset of dry-wet index in the middle and upper reaches of the Yellow River over the past 2000 years. Digital J Global Change Data Repository, 2020
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed