Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci Chin    2009, Vol. 3 Issue (1) : 91-99    https://doi.org/10.1007/s11707-009-0009-5
RESEARCH ARTICLE
Distributions of phospholipid and glycolipid fatty acids in two strains of different functional Erythrobacter sp. isolated from South China Sea
Huan YANG1,3(), Xiangru MA11, Qiang LI2, Nianzhi JIAO2, Shucheng XIE1,3
1. Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430074, China; 2. State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen 361005, China; 3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
 Download: PDF(182 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The comparison of the fatty acids between aerobic anoxygenic phototrophic bacteria (AAPB) and their phylogenetic relatives has been a fascinating but yet enigmatic topic, enhancing our understanding of physiological variations between these evolutionarily related microorganisms. Two strains of marine bacteria, both phylogenetically falling into Erythrobacter sp., were isolated from the South China Sea, and demonstrated, respectively, to be an aerobic anoxygenic phototrophic bacteria (AAPB) (JL475) which is capable of anoxygenic photosynthesis via BChl a, and an obligate heterotroph (JL316) with a lack of BChl a, on the basis of phylogenetic analysis and pure culture cultivation. Phospholipid fatty acids (PLFA) and glycolipid fatty acids (GLFA) of the two strains were extracted and analyzed by gas chromatography-mass spectrometry. The PLFA in JL475 AAPB are characterized by C18∶1, C18∶2ω7,13 and C18∶0, with the C18∶2ω7,13 being a specific compound for AAPB and in particular for Erythrobacter longus and some of its phylogenetically closely related relatives. The JL316 strain is characterized in PLFA by the presence of C18∶1, C16∶1 and C16∶0, and in particular C17∶1. GLFA do not show any discrimination between the two strains. Four α,ω-dicarboxylic acids, including 1,8-octanedioic acid, 1,9-nonanedioic acid, 1,10-decanedioic acid and 1,11-undecanedioic acid, are present only in JL316 GLFA, presumably derived from metabolic products. C14—C16 2-hydroxy fatty acids were found in the two strains, probably assuming a similar function of their LPS in outer membranes.

Keywords AAPB      PLFA      GLFA      hydroxy fatty acids      Erythrobacter     
Corresponding Author(s): YANG Huan,Email:yanghuansailing@hotmail.com   
Issue Date: 05 March 2009
 Cite this article:   
Huan YANG,Xiangru MA1,Qiang LI, et al. Distributions of phospholipid and glycolipid fatty acids in two strains of different functional Erythrobacter sp. isolated from South China Sea[J]. Front Earth Sci Chin, 2009, 3(1): 91-99.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0009-5
https://academic.hep.com.cn/fesci/EN/Y2009/V3/I1/91
sample No.GPS positionsampling water depth/mseawater salinity/‰temp./ °Ccatalog
Puf M geneBChl amarine function group AAPB
JL475112.00°E, 20.00°N75
JL316114.50°E, 21.50°Nsurface seawater34.3821.18
Tab.1  Sample information of the two strains
Fig.1  Phylogenetic positions of JL475 and JL316 based on 16S rRNA analysis. The scale bar represents 0.5 substitution per 100 nucleotide positions
sample No.JL475JL316
catalogcomponentsrentention time/minrelative abundance/%componentsrentention time/minrelative abundance/%
saturated fatty acids15∶035.580.55
16∶038.4712.7816∶039.074.72
17∶041.711.42
18∶044.660.43
unsaturated fatty acids16∶237.320.06
16∶1(a)*37.601.00
16∶1(b)37.841.1716∶138.1016.43
17∶1(a)41.000.58
17∶1(b)41.250.7317∶141.496.60
18∶2ω7,13*43.3421.59
18∶2ω6,943.700.20
18∶1ω744.2547.8418∶1ω744.0071.18
19∶145.980.20
branched fatty acidsi15∶0?34.470.21
i16∶139.930.13
i17∶040.521.66
cyclopropyl fatty acidscy19∶0#44.869.32
unidentifiable compounds0.131.08
Tab.2  PLFA and their relative abundance
Fig.2  Comparison of mass chromatographs of GLFA, diethyl esters between two bacteria (m/z 88). a,b,c,d deonte1,8–octanedioic acid, 1,9–nonanedioic acid, 1,10–decanedioic acid and 1,11–undecanedioic acid, respectively
sample No.JL475JL316
catalogcomponentsretention time/minrelative abundance/%componentsretention time/minrelative abundance/%
saturated fatty acids9∶023.660.699∶0
10∶027.932.9710∶0
11∶031.990.1111∶0
12∶035.890.2812∶035.891.01
13∶039.719.2613∶039.611.00
14∶043.203.0714∶043.175.45
15∶046.624.9315∶046.554.23
16∶050.0849.7516∶049.8251.35
17∶052.935.3417∶052.853.89
18∶055.882.0718∶055.817.50
unsaturated fatty acids10∶127.590.13
16∶1(a)*48.960.9916∶1(a)49.173.20
16∶1(b)49.210.2916∶1(b)49.460.52
17∶1(a)52.060.19
17∶1(b)52.220.11
17∶1(c)52.450.1417∶152.421.45
18∶254.690.83
18∶155.547.4718∶1(a)55.3211.51
18∶1(b)55.570.35
19∶119∶156.010.79
branched fatty acidsi12∶0?34.470.04
i13∶038.910.56
i14∶041.891.42
i15∶045.352.24
i16∶0i16∶048.590.23%
i17∶051.815.38
other fatty acids1.741,8-octanedioic acid35.680.53
1,9-nonanedioic acid39.441.34
1,10-decanedioic acid43.022.67
1,11-undecanedioic acid46.412.98
Tab.3  GLFA and their relative abundance
Fig.3  Mass spectra of 1,8–octanedioic acid, diethyl ester and its fragmentation pattern
1 Bardgett R D, Hobbs P J, Frosteg?rd ? (1996). Changes in soil fungal: Bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils , 22(3): 261-264
doi: 10.1007/BF00382522
2 Béjà O, Suzuki M T, Heidelberg J F, Nelson W C, Preston C M, Hamada T, Eisen J A, Fraser C M, Delong E F (2002). Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature , 415: 630-633
doi: 10.1038/415630a
3 Bligh E G, Dyer W J (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology ,37:911-917
4 Cardoso J N, Eglinton G (1983). The use of hydroxyacids as geochemical indicators. Geochimica et Cosmochimica Acta , 47: 723-730
doi: 10.1016/0016-7037(83)90106-0
5 Cottrell M T, Mannino A, Kirchman D L (2006). Aerobic anoxygenic phototrophic bacteria in the mid-Atlantic Bight and the North Pacific Gycre. Applied and Environmental Microbiology ,72(1): 557-564
doi: 10.1128/AEM.72.1.557-564.2006
6 Denner E B M, Vybiral D, Koblí?ek M, K?mpfer P, Busse H-J, Velimirov B (2002). Erythrobacter citreus sp.nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. International Journal of Systematic and Evolutionary Microbiology , 52: 1655-1661
doi: 10.1099/ijs.0.01885-0
7 Erb T J, Berg I A, Brecht V, Müller M, Fuchs G, Alber B E (2007). Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: The ethylmalonyl-CoA pathway. Proceedings of the National Academy of Sciences , 104(25): 10631-10636
doi: 10.1073/pnas.0702791104
8 Frosteg?rd ?, Tunlid A, B??th E (1993). Phospholipid fatty acid composition, biomasss, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology , 59(11): 3605-3617
9 Fuerst J A, Hawkins J A, Holmes A, Sly L I, Moore C J, Stackebrandt E (1993). Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. International Journal of Systematic Bacteriology , 43:125-34
10 Guckert J B, Hood M A, White D C (1986). Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: Increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Applied and Environmental Microbiology , 52(4): 794-801
11 Hiraishi A, Matsuzawa Y, Kanbe T ,Wakao N (2000). Acidisphaera rubrifaciensgen. nov., sp. nov.,an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. International Journal of Systematic and Evolutionary Microbiology , 50 :1539-1546
12 Ivanova E P, Bowman J P, Lysenko A M, Zhukova N V, Lysenkod A M, Zhukovae N V,Gorshkovab N M, Kuznetsovab T A, Kalinovskayab N I, Shevchenkob L S, Mikhailovb V V (2005). Erythrobacter vulgarissp. nov., a novel organism isolated from the marine invertibrates. Systematic and Applied Microbiology , 28: 123-130
doi: 10.1016/j.syapm.2004.11.001
13 Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F, Wang P (2007). Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environmental Microbiology , 9(12): 3091-3099
doi: 10.1111/j.1462-2920.2007.01419.x
14 Kawamura K, Kasukabe H, Barrie L A (1996). Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in Arctic aerosols: One year of observations. Atmospheric Environment , 30(10/11): 1709-1722
doi: 10.1016/1352-2310(95)00395-9
15 Kenyon C N (1978). Complex lipids and fatty acids of photosynthetic bacteria. In: Clayton R K, Sistrom W R, eds. The Photosynthetic Bacteria . New York: Plenum, 281-313
16 Kieft T L, Ringelberg D B, White D C (1994). Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and dessication in a porous medium. Applied and Environmental Microbiology , 60(9): 3292-3299
17 Koblí?ek M, Béjà O, Bidigare R R, Christensen S, Benitez-Nelson B, Vetriani C, Kolber M K, Falkowski P G, Kolber Z S (2003). Isolation and characterisation of Erythrobactersp. strains from the upper ocean. Archives of Microbiology , 180: 327-338
doi: 10.1007/s00203-003-0596-6
18 Kolber Z S, Van Dover C L, Niederman R A , Falkowski P G (2000). Bacterial photosynthesis in surface waters of the open ocean. Nature , 407: 177-179
doi: 10.1038/35025044
19 Kolber Z S, Plumley F G, Lang A S, Beatty J T, Lang A S, Beatty J T, Blankenship R E, VanDover C L, Vetriani C, Koblizek M, Rathgeber C, Falkowski1 P G (2001). Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science , 292: 2492-2495
doi: 10.1126/science.1059707
20 Kompantseva E I, Imhoff J F, Thiemann B,Panteleeva E E,Akimov V N(2007). Comparative study of the fatty acid composition of some groups of purple nonsulfur bacteria. Microbiology , 76(5): 541-551
doi: 10.1134/S0026261707050050
21 Kumar S, Tamura K, Nei M (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics , 5: 150-163
doi: 10.1093/bib/5.2.150
22 Lehtonen K, Ketola M (1993). Solvent-extractable lipids of Sphagnum, Carex, Bryales and Carex-Bryales peats: Content and compositional features vs peat humification. Organic Geochemistry , 20(3): 363–380
doi: 10.1016/0146-6380(93)90126-V
23 Rainey F A, Ward-Rainey N, Kroppenstedt R M, Stackebrandt E (1996). The genus Nocardiopsis represents a phylogenetically coherent taxon and distinct actinomycete lineage: Proposal of Nocardiopsaceae fam. nov. International Journal of Systematic Bacteriology , 46: 1088-1092
24 Rajendran N, Matsuda O, Urushigawa Y, Simidu U (1994). Characterization of microbial community structure in the surface sediment of Osaka Bay, Japan, by phospholipid fatty acid analysis. Applied and Environmental Microbiology , 60(1): 248-257
25 Rathgeber C, Beatty J T, Yurkov V(2004). Aerobic phototrophic bacteria: New evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynthesis Research , 81: 113-128
doi: 10.1023/B:PRES.0000035036.49977.bc
26 Rontani J F, Christodoulou S, Koblizek M (2005). GC-MS structural characterisation of fatty acids from marine aerobic anoxygenic phototrophic bacteria. Lipids , 40(1): 97-108
doi: 10.1007/s11745-005-1364-6
27 Saitou N, Nei M (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution , 4: 406-425
28 Schwalbach M S, Fuhrman J A (2005). Wide-ranging abudances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnology and Oceanography , 50(2): 620-628
29 Shiba T, Shioi Y, Takamiya K-I, Sutton D C,. Wilkinson C R (1991). Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coasts of Australia. Applied and Environmental Microbiology , 57(1): 295-300
30 Shiba T, Simidu U, Taga N (1979). Distribution of aerobic bacteria which contain bacteriochlorophyll a. Applied and Environmental Microbiology , 38(1): 43-45
31 Shimada K (1995). Aerobic anoxygenic phototrophs. In: Blankenship R E, Madigan M T, Bauer C E, eds. Anoxygenic Photosynthetic Bacteria. Dordrecht , The Netherlands: Kluwer Academic: 105-122
32 Stahl P D, Klug M J (1996). Characterization and differentiation of filamentous fungi based on fatty acid composition. Applied and Environmental Microbiology , 62(11): 4136-4146
33 Stephanou E G, Stratigakis N (1993). Oxocarboxylic and α,ω-dicarboxylic acids: Photooxidation products of biogenic unsaturated fatty acids present in urban aerosols. Environmental Science and Technology , 27: 1403–1407
doi: 10.1021/es00044a016
34 Summons R E, Jahnke L L, Simoneit B R T (1996). Lipid biomarkers for bacterial ecosystems: Studies of cultured organisms, hydrothermal environments and ancient sediments. Evolution of hydrothermal ecosystems on Earth (and Mars?) . Ciba Foundation Symposium ,202. Chichester: Wiley, 174-194
35 Uhlí?ová E, Elhottová D, TriskaJ, SantruckovaH (2005). Physiology and microbial community structure in soil at extreme water content. Folia microbiologica , 50(2): 161-166
doi: 10.1021/es00044a016
36 Volkman J K, Barrett S M, Blackburn S I, Mansour M P, Sikes E L, GelinF (1998). Microalgal biomarkers: A review of recent research developments. Organic Geochemistry , 29(5-7): 1163-1179
doi: 10.1016/S0146-6380(98)00062-X
37 Volkman J K, Johns R B, Gillan F T, Perry G J, Bavor H J (1980). Microbial lipids of an intertidal sediment: I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta , 44(8): 1133-1143
doi: 10.1016/0016-7037(80)90067-8
38 Waidner L A , Kirchman D L (2007). Aerobic anoxygenic phototrophic bacteria attached to particles in turbid waters of the Delaware and Chesapeake Estuaries. Applied and Environmental Microbiology , 73(12): 3936–3944
doi: 10.1128/AEM.00592-07
39 White D C, Davis W M, Nichols J S, King J D, Bobbie R J (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate.Oecologia , 40:51-62
doi: 10.1007/BF00388810
40 Yoon J-H, Kang K H, Oh T-K, Park Y-H (2004).Erythrobacter aquimarissp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology , 54: 1981-1985
doi: 10.1099/ijs.0.63100-0
41 Yoon J-H, Kim H, Kim I-G, Kang K H, Park Y-H (2003).Erythrobacter flavussp. nov., a slight halophile from the East Sea in Korea. International Journal of Systematic and Evolutionary Microbiology , 53: 1169–1174
doi: 10.1099/ijs.0.02510-0
42 Yoon J-H, Oh T-K, Park Y-H (2005). Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology , 55: 71-75
doi: 10.1099/ijs.0.63233-0
43 Yurkov V V, Beatty J T (1998a). Aerobic anoxygenic phototrophic bacteria. Microbiology and Molecular Biology Reviews , 62(3): 695-724
44 Yurkov V V, Beatty J T (1998b). Isolation of aerobic anoxygenic photosynthetic bacteria from black smoker plume waters of the Juan de Fuca Ridge in the Pacific Ocean. Applied and Environmental Microbiology , 64(1): 337-341
45 Yurkova N, Rathgeber C, Swiderski J, Stackebrandt E, Beatty J T, Hall K J, Yurkov V (2002). Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of meromictic lake. FEMS Microbiology Ecology , 40: 191-204
doi: 10.1111/j.1574-6941.2002.tb00952.x
46 Yutin N, Suzuki M T, Teeling H, Weber M, Venter J C, Rusch D B, Béjà O (2007). Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environmental Microbiology , 9(6): 1464-1475
doi: 10.1111/j.1462-2920.2007.01265.x
47 Zelles L (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biology and Fertility of Soils , 29: 111-129
doi: 10.1007/s003740050533
48 Zhang C L, Fouke B W, Bonheyo G T, Peacock A D, White D C, Huang Y , Romanek C S(2004). Lipid biomarkers and carbon isotopes of modern travertine deposits (Yellowstone National Park, USA): Implications for biogeochemical dynamics in hot-spring systems. Geochimica et Cosmochimica Acta , 68(15): 3157-3169
doi: 10.1016/j.gca.2004.03.005
49 Zink K-G, Wilkes H, Disko U, Elvert M, Horsfield B (2003). Intact phospholipids-microbial “life markers” in marine deep subsurface sediments. Organic Geochemistry , 34: 755-769
doi: 10.1016/S0146-6380(03)00041-X
[1] Yiliang LI, . Microbial respiratory quinones as indicator of ecophysiological redox conditions[J]. Front. Earth Sci., 2010, 4(2): 195-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed