Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci Chin    2009, Vol. 3 Issue (1) : 80-90    https://doi.org/10.1007/s11707-009-0016-6
RESEARCH ARTICLE
Abundance and diversity of snow bacteria in two glaciers at the Tibetan Plateau
Yongqin LIU1(), Tandong YAO1, Nianzhi JIAO2, Shichang KANG1, Yonghui ZENG2, Xiaobo LIU1
1. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China; 2. State Key Laboratory for Marine Environmental Sciences, Xiamen 361005, China
 Download: PDF(223 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Snow bacterial abundance and diversity at the Guoqu Glacier and the East Rongbuk Glacier located in the central and southern Tibetan Pateau were investigated using a 16S rRNA gene clone library and flow cytometry approach. Bacterial abundance was observed to show seasonal variation, with different patterns, at the two glaciers. High bacterial abundance occurs during the monsoon season at the East Rongbuk Glacier and during the non-monsoon season at the Guoqu Glacier. Seasonal variation in abundance is caused by the snow bacterial growth at the East Rongbuk Glacier, but by bacterial input from the dust at the Guoqu Glacier. Under the influence of various atmospheric circulations and temperature, bacterial diversity varies seasonally at different degrees. Seasonal variation in bacterial diversity is more distinct at the Guoqu Glacier than at the East Rongbuk Glacier. Bacterial diversity at the two glaciers exhibits different responses to various environmental conditions. More bacteria at the Guoqu Glacier are connected with those from a soil environment, while more bacteria affiliated with a marine environment occur at the East Rongbuk Glacier.

Keywords bacteria      abundance      diversity      snow      glacier      Tibetan Peau     
Corresponding Author(s): LIU Yongqin,Email:yqliu@itpcas.ac.cn   
Issue Date: 05 March 2009
 Cite this article:   
Yongqin LIU,Tandong YAO,Nianzhi JIAO, et al. Abundance and diversity of snow bacteria in two glaciers at the Tibetan Plateau[J]. Front Earth Sci Chin, 2009, 3(1): 80-90.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0016-6
https://academic.hep.com.cn/fesci/EN/Y2009/V3/I1/80
Fig.1  Location of the Guoqu and Rongbuk Glacier on the central and southern Tibetan Plateau
Fig.2  Cell abundance, O, concentrations of Ca, Mg, Na, Cl, SO, NO, and NH at different layers of the East Rongbuk Glacier (a) and Guoqu Glacier (b)
categorysequencenameGenBank accession numbernumber of clonesseasongenusnearest neighbor
sequenceValue/ %isolated environment
ActinobacteriaG2-3EU1530051MArthrobacterDQ34141598Antarctic ice
G2-79EU1530131MArthrobacterAF47935498Guliya ice core, China
G2-80EU1530141MArthrobacterDQ33960199Alpine subnival plants
G22-17EU1530192MArthrobacterDQ33962298Alpine subnival plants
G22-20EU1530203MArthrobacter98
G2-19EU1530002MArthrobacterDQ35172797Antarcitc soil
G2-65EU1530071MBrevibacteriumAY47519399River
G2-76EU1530121MBrevibacteriumAY46837499Human
G22-26EU1530211MBrevibacteriumAY28246798Marine water
G2-84EU1530153MBrevibacteriumAJ78634397Antarctic seawater
RBL-7-47DQ3231091MBrevibacteriumEU98245499Hydrothermal vent sediment
RBL-7-45DQ3231089BKocuriaAY43926099Greenland ice core
G6-7EU1530401NunclassifiedAF46844199Arctic sea ice
Alpha-proteobacteriaRBL-7-59DQ3231111NAfipiaU8776399Unspecified source
G2-61EU1530061MBradyrhizobiumDQ12565799Soil
G22-57EU1530311MMethylocellaAY91351097Soil
G22-28EU1530234MOchrobactrumAM41106899Deep sea
G22-30EU1530251MOchrobactrumAM41107299
G22-41EU1530282MPhenylobacteriumDQ49004299Ridge flank crustal fluids
G2-66EU1529961MPhyllobacteriumAF29048399Sheep
RBL-5-30DQ3231002NRoseobacterAY34945999Marine
RBL-9-34DQ3231142MRuegeriaAY74943699Unspecified source
RBL-5-32DQ3231011NSphingomonasAY57182899Antarctica soil
RBL-10-69DQ3230882MSphingomonasAJ81084396Marine
G2-12EU1529981MSphingomonasAB24534697Soil
G2-28EU1530041MSphingomonasDQ09286897Unspecified source
G2-69EU1530081MSphingomonasDQ15183099Permafrost in the Tianshan Mountains, China
G2-73EU1530111MSphingomonasDQ07110499Marine water
G2-85EU1530162MSphingomonasAY74943699Unspecified source
G22-29EU1530241MSphingomonasAF50327799Soil
G22-37EU1530271MSphingomonasDQ24823097Soil
RBL-4-63DQ3230982MStappiaAM40323299Marine
Beta-proteobacteriaRBL-5-15DQ32309915BAcidovoraxDQ111771100Salt marsh wetland sediments
G6-212EU1530331NAquabacteriumAB16210597Upland soil
RBL-7-22DQ3231042NCurvibacterAB02139099Unspecified source
RBL-7-37DQ3231051NPolaromonasAY58457699Lake
G6-9EU1530424NPolaromonasAY31517498Franz Josef Glacier,New Zealand
G6-215EU1530344NPolaromonasAY31517797Franz Josef Glacier,New Zealand
G6-29EU15303611NPolaromonasEF12765198Subsurface soil
RBL-9-51DQ3231151MRhodoferaxAF43594898Sediment in bay
G2-22EU1530021MRalstoniaDQ67699898Estuary sediment
G22-27EU1530221MRalstoniaAY16205798Soil
RBL-10-97DQ3230891MunclassifiedAY69154495Unspecified source
G6-52EU1530372NunclassifiedDQ22840996John Evans Glacier,Canada
G6-58EU1530382NunclassifiedAY62226996Soil
Gamma-proteobacteriaRBL-5-44DQ3231021NAlteromonasAY34442999Hotspot
RBL-7-20DQ32310311BAcinetobacterDQ01183998Soil
RBL-9-29DQ3231131MAcinetobacterAY80038398Unspecified source
RBL-10-26DQ32308550BAcinetobacterEU60351499Soil
RBL-7-44DQ3231071NRhodanobacterAY21859696Sediments from Antarctica
RBL-10-19DQ3230839MEnterobacterDQ12970298Soil
RBL-10-20DQ32308456BEnterobacterEU91523499Arctic sediment
G22-31EU1530261MNevskiaAJ00101197Unspecified source
G2-27EU1530031MPseudomonasDQ33961499Alpine subnival plants
G2-72EU1530101MPseudomonas99
G22-10EU1530181MPseudomonas98
G22-50EU1530292MPseudomonas99
G2-87EU1530171MPseudomonasAY62226498Subsurface soil
RBL-10-37DQ3230873MYersiniaEU19632298Arctic cold spring
RBL-10-17DQ3230824MunclassifiedAF53421096Soil
RBL-4-101DQ3230954BuclassifiedAB19573593Lake
RBL-3-8DQ3230912MuclassifiedEU91523497Arctic sediment
RBL-10-30DQ3230861MuclassifiedDQ25635096Subsurface water
G2-20EU1530012MunclassifiedAF49872199Soil
CFBG22-92EU1530321MChitinophagaAY03861299Lake sediment
RBL-3-9DQ3230921MFlectobacillusAY58458398Lake
RBL-7-38DQ3231062NFlavobacteriumAJ50871198Unspecified source
G2-11EU1529972MHymenobacterAY79230498Freshwater lake
G6-26EU1530352NHymenobacterDQ41853296Puruogangri ice core,China
G6-88EU15304128NHymenobacter96
G6-64EU1530395NHymenobacterDQ35172896Antarctic soil
FirmicutesRBL-4-31DQ32309722BAnoxybacillusAM90272199Hot spring
G22-55EU1530301MBacillusDQ12949398Urban aerosols
RBL-10-15DQ3230811MBrevibacillusAJ58638898Unspecified source
G2-18EU1529991MPlanococcusAJ49603999Antarctic soil
CyanobacteriaRBL-3-13DQ3230905BChamaesiphonAF07616296Antarctic lake ice
RBL-7-58DQ3231109NSynechococcusEF39574798Estuarine water
TM7candidate phylumRBL-7-9DQ3231121NTM7unclassifiedAF51310296Foaming activated sludge
Tab.1  Snow bacterial 16S rRNA gene clones at the Guoqu Glacier (G) and East Rongbuk Glacier (RBL) and their nearest neighbor in the GenBank database.
Fig.3  Bacterial diversity at the East Rongbuk Glacier during the monsoon season (RBL-m) and the non-monsoon season (RBL-N), and at the Guoqu Glacier during the monsoon season (G2) and the non-monsoon season (G6)
1 Barnett T P, Dumenil L, Schlese U, Roeckner E, Latif M (1989). The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci , 46: 661-685
doi: 10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2
2 Brosius J, Palmer M L, Kennedy J P, Noller F H (1978). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A , 75: 4801-4805
doi: 10.1073/pnas.75.10.4801
3 Buck C F, Mayewski P A, Spencer M J, Whitlow S, Twickler M S, Barrett D (1992). Determination of major ions in snow and ice cores by ion chromatography. J Chromatogr , 594: 225-228
doi: 10.1016/0021-9673(92)80334-Q
4 Christner B C (2002). Detection, recovery, isolation and characterization of bacteria in glacial ice and lake Vostok accretion ice [Dissertation]. Columbus: The Ohio State University
5 Christner B C, Mosley-Thompson E, Thompson L G, Reeve J N (2003). Bacterial recovery from ancient glacial ice. Environmental Microbiology , 5: 433-436
doi: 10.1046/j.1462-2920.2003.00422.x
6 Christner B C, Mosley-Thompson E, Thompson L G, Zagorodnov V, Sandman K, Reeve J N (2000). Recovery and identification of viable bacteria immured in glacial ice. Icarus , 144: 479-485
doi: 10.1006/icar.1999.6288
7 Cole J R, Chai B, Farris R J, Wang Q, Kulam S A, McGarrell D M, Garrity G M, Tiedje J M (2005). The ribosomal database project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucl Acids Res , 33: D294-296
doi: 10.1093/nar/gki038
8 Duan K Q, Yao T D, Thompson L G (2006). Response of monsoon precipitation in the Himalayas to global warming. Journal of Geophysical Research-Atmospheres , 111
9 Finneran K T, Johnsen C V, Lovley D R (2003). Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol , 53: 669-673
doi: 10.1099/ijs.0.02298-0
10 Jiao N Z, Yang Y H, Hong N, Ma Y, Harada S, Koshikawa H, Watanabe M (2005). Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Continental Shelf Research , 25: 1265-1279
doi: 10.1016/j.csr.2005.01.002
11 Kang S C, Qin D H, Mayewski P A, Sneed S B (2002). Chemical composition of fresh snow on Xixiabangma peak, central Himalaya, during the summer monsoon season. Journal of Glaciology , 48: 337-339
doi: 10.3189/172756502781831467
12 Kang S C, Mayewski P A, Qin D H, Sneed S A, Ren J W, Zhang D Q (2004). Seasonal differences in snow chemistry from the vicinity of Mt. Everest, central Himalayas. Atmos Environ , 38: 2819-2829
doi: 10.1016/j.atmosenv.2004.02.043
13 Kang S C, Zhang Q G, Kaspari S, Qin D H, Cong Z Y, Ren J W, Mayewski P A (2007a). Spatial and seasonal variations of elemental composition in Mt. Everest (Qomolangma) snow/firn. Atmos Environ , 41: 7208-7218
doi: 10.1016/j.atmosenv.2007.05.024
14 Kang S C, Zhang Y J, Qin D H, Ren J W, Zhang Q G, Grigholm B, Mayewski P A (2007b). Recent temperature increase recorded in an ice core in the source region of Yangtze River. Chin Sci Bull , 52: 825-831
doi: 10.1007/s11434-007-0140-1
15 Kemp P F, Aller J Y (2004). Bacterial diversity in aquatic and other environments: What 16S rDNA libraries can tell us. Fems Microb Ecol , 47: 161-177
doi: 10.1016/S0168-6496(03)00257-5
16 Kim B C, Park J R, Bae J W, Rhee S K, Kim K H, Oh J W, Park Y H (2006). Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol , 56: 75-79
doi: 10.1099/ijs.0.63735-0
17 Kumar S, Tamura K, Nei M (2004). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics , 5: 150-163
doi: 10.1093/bib/5.2.150
18 Liu Y Q, Yao T D, Kang S C, Jiao N Z, Zeng Y H, Shi Y, Luo T W, Jing Z F, Huang S J (2006). Seasonal variation of snow microbial community structure in the East Rongbuk glacier, Mt. Everest. Chin Sci Bull , 51: 1476-1486
doi: 10.1007/s11434-006-1476-7
19 Liu Y Q, Yao T D, Kang S C, Jiao N Z, Zeng Y H, Shi Y, Luo T W, Jing Z F, Huang S J (2007). Microbial community structure in major habits above 6000 m on Mount Everest. Chin Sci Bull , 52: 2350-2357
doi: 10.1007/s11434-007-0360-4
20 Maidak B L, Cole J R, Lilburn T G, Parker C T, Jr., Saxman P R, Farris R J, Garrity G M, Olsen G J, Schmidt T M, Tiedje J M (2001). The RDP-II (ribosomal database project). Nucl. Acids Res , 29: 173-174
doi: 10.1093/nar/29.1.173
21 Marie D, Partensky F, Jacquet S, Vaulot D (1997). Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol , 63: 186-193
22 Miteva V (2007). Bacteria in snow and glacier ice. In: Margesin R, Schinner F M J C, Gerday C, eds. Psychrophiles: From Biodiversity to Biotechnology . Berlin Heidelberg: Springer, 31-50
23 Miteva V I, Sheridan P P, Brenchley J E (2004). Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol , 70: 202-213
doi: 10.1128/AEM.70.1.202-213.2004
24 Moran M A, Gonzalez J M, Kiene R P (2003). Linking a bacterial taxon to sulfur cycling in the sea: Studies of the marine Roseobacter Group. Geomicrobiology Journal , 20: 375-388
doi: 10.1080/01490450303901
25 Schloss P D, Handelsman J (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and Estimating Species Richness. Appl Environ Microbiol , 71: 1501-1506
doi: 10.1128/AEM.71.3.1501-1506.2005
26 Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005). Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol , 71: 123-130
doi: 10.1128/AEM.71.1.123-130.2005
27 Shi Y (2000). Glacier and Their Environment in China . Beijing: Science Press (in Chinese)
28 Thompson L G, Yao T D, Mosley-Thompson E, Davis M E, Henderson K A, Lin P N (2000). A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science , 289: 1916-1919
doi: 10.1126/science.289.5486.1916
29 Tian L, Masson-Delmotte V, Stievenard M, Yao T D, Jouzel J (2001a). Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. Journal of Geophysical Research-Atmospheres , 106: 28081-28088
doi: 10.1029/2001JD900186
30 Tian L, Yao T D, Schuster P F, White J W C, Ichiyanagi K, Pendall E, Pu J, Wu Y (2003). Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. Journal of Geophysical Research-Atmospheres , 108
31 Tian L, Yao T D, Sun W Z, Stievenard M, Jouzel J (2001b). Relationship between delta D and delta O-18 in precipitation on north and south of the Tibetan Plateau and moisture recycling. Science in China (Series D) , 44: 789-796
32 Tian L D, Yao T D, White J W C, Yu W S, Wang N L (2005). Westerly moisture transport to the middle of Himalayas revealed from the high deuterium excess. Chin Sci Bull , 50: 1026-1030
doi: 10.1360/04wd0030
33 Tian L D, Yao T D, Li Z, MacClune K, Wu G J, Xu B Q, Li Y F, Lu A X, Shen Y P (2006). Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs. Journal of Geophysical Research-Atmospheres , 111
34 Xiang S R, Yao T D, An L Z, Li Z, Wu G J, Wang Y Q, Xu B Q, Wang J X (2004). Change of bacterial community in the Malan ice core and its relation to climate and environment. Chin Sci Bull , 49: 1869-1875
doi: 10.1360/03wd0422
35 Xiang S R, Yao T D, An L Z, Wu G J, Xu B Q, Ma X J, Li Z, Wang J X, Yu W S (2005). Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core. Science in China (Series D) , 48: 1728-1739
36 Xiao C, Kang S C, Qin D, Yao T D, Ren J W (2002a). Transport of atmospheric impurities over the Qinghai-Xizang (Tibetan) plateau as shown by snow chemistry. Journal of Asian Earth Sciences , 20: 231-239
doi: 10.1016/S1367-9120(01)00065-7
37 Xiao C D, Qin D H, Ren J W, Li Z Q, Wang X X. (2002b). Glaciochemistry distribution in the surface snow/ice in some key regions of the cryosphere: The environmental significance. Journal of Glaciology and Geocryology , 24: 492-499
38 Xie A H, Dahe Q, Ren J W, Xiang Q, Xiao C D, Hou S G, Kang S C, Yang X G, Jiang Y Y (2007). Meteorological observations on Mount Everest in 2005. Progress in Natural Science , 17: 828-837
doi: 10.1080/10002007088537479
39 Xie S C, Yao T D, Kang S C, Xu B Q, Duan K Q, Thompson L G (2000). Geochemical analyses of a Himalayan snowpit profile: Implications for atmospheric pollution and climate. Org Geochem , 31: 15-23
doi: 10.1016/S0146-6380(99)00133-3
40 Xiong K J, Tang X, Xie S C (1999). Yeast isolated from snow at Tibet. J Microbio, 19: 58-62 (in Chinese with English abstract )
41 Xu B Q, Yao T D, Liu X Q, Wang N L (2006). Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau. Annals of Glaciology , 43: 257-262
doi: 10.3189/172756406781812122
42 Yao T D, Wu G J, Pu J C, Jiao K Q, Huang C L (2004). Relationship between calcium and atmospheric dust recorded in Guliya ice core. Chin Sci Bull , 49: 706-710
doi: 10.1360/03wd0417
43 Yao T D, Xiang S R, Zhang X J, Wang N L, Wang Y Q (2006). Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Global Biogeochemical Cycles , 20: GB1004,
doi:1010.1029/2004GB002424
44 Zhang G S, Niu F J, Ma X J, Liu W, Dong M X, Feng H Y, An L Z, Cheng G D (2007). Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet plateau permafrost region. Can J Microbiol , 53: 1000-1010
doi: 10.1139/W07-031
45 Zhang Q, Kang S, Cong Z, Hou S, Liu Y (2008). Elemental composition in surface snow from the ultra-high elevation area of Mt. Qomolangma (Everest). Chin Sci Bull , 53: 289-294
doi: 10.1007/s11434-007-0446-z
46 Zhang X F, Yao T D, An L Z, Tian L D XuS J(2006). A study on the vertical profile of bacterial DNA structure in the Puruogangri (Tibetan Plateau) ice core using denaturing gradient gel electrophoresis. Annals of Glaciology , 43: 160-166
doi: 10.3189/172756406781811934
47 Zhang X J, Yao T D, Ma X J, Wang N L (2001). Analysis of the characteristics of microorganisms packed in the ice core of Malan glacier, Tibet, China. Science in China (Series D) , 44: 369-374
[1] S.R. FASSNACHT, J.I. LÓPEZ-MORENO. Patterns of trends in niveograph characteristics across the western United States from snow telemetry data[J]. Front. Earth Sci., 2020, 14(2): 315-325.
[2] Bijeesh Kozhikkodan VEETTIL, Jefferson Cardia SIMÕES. The 2015/16 El Niño-related glacier changes in the tropical Andes[J]. Front. Earth Sci., 2019, 13(2): 422-429.
[3] D.M. HULTSTRAND, S.R. FASSNACHT. The sensitivity of snowpack sublimation estimates to instrument and measurement uncertainty perturbed in a Monte Carlo framework[J]. Front. Earth Sci., 2018, 12(4): 728-738.
[4] Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
[5] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
[6] S.R. FASSNACHT, K.S.J. BROWN, E.J. BLUMBERG, J.I. LÓPEZ MORENO, T.P. COVINO, M. KAPPAS, Y. HUANG, V. LEONE, A.H. KASHIPAZHA. Distribution of snow depth variability[J]. Front. Earth Sci., 2018, 12(4): 683-692.
[7] Kazuyoshi SUZUKI, Milija ZUPANSKI. Uncertainty in solid precipitation and snow depth prediction for Siberia using the Noah and Noah-MP land surface models[J]. Front. Earth Sci., 2018, 12(4): 672-682.
[8] Alba SANMIGUEL-VALLELADO, Enrique MORÁN-TEJEDA, Esteban ALONSO-GONZÁLEZ, Juan Ignacio LÓPEZ-MORENO. Effect of snow on mountain river regimes: an example from the Pyrenees[J]. Front. Earth Sci., 2017, 11(3): 515-530.
[9] Ryan W. WEBB. Using ground penetrating radar to assess the variability of snow water equivalent and melt in a mixed canopy forest, Northern Colorado[J]. Front. Earth Sci., 2017, 11(3): 482-495.
[10] Molly E. TEDESCHE, Steven R. FASSNACHT, Paul J. MEIMAN. Scales of snow depth variability in high elevation rangeland sagebrush[J]. Front. Earth Sci., 2017, 11(3): 469-481.
[11] Brooke B. OSBORNE,Jill S. BARON,Matthew D. WALLENSTEIN. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats[J]. Front. Earth Sci., 2016, 10(1): 1-12.
[12] Yanyun ZHAO,Xiangming HU,Jingtao LIU,Zhaohua LU,Jiangbao XIA,Jiayi TIAN,Junsheng MA. Vegetation pattern in Shell Ridge Island in China’s Yellow River Delta[J]. Front. Earth Sci., 2015, 9(3): 567-577.
[13] M. A. Rasheed,Syed Zaheer Hasan,P. L. Srinivasa Rao,Annapurna Boruah,V. Sudarshan,B. Kumar,T. Harinarayana. Application of geo-microbial prospecting method for finding oil and gas reservoirs[J]. Front. Earth Sci., 2015, 9(1): 40-50.
[14] Mengzhen XU,Zhaoyin WANG,Baozhu PAN,Guoan YU. The assemblage characteristics of benthic macroinvertebrates in the Yalutsangpo River, the highest major river in the world[J]. Front. Earth Sci., 2014, 8(3): 351-361.
[15] Weiying ZHANG,Inchio LOU,Wai Kin UNG,Yijun KONG,Kai Meng MOK. Application of PCR and real-time PCR for monitoring cyanobacteria, Microcystis spp. and Cylindrospermopsis raciborskii in Macau freshwater reservoir[J]. Front. Earth Sci., 2014, 8(2): 291-301.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed