Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci Chin    2009, Vol. 3 Issue (3) : 374-380    https://doi.org/10.1007/s11707-009-0040-6
RESEARCH ARTICLE
Parameters optimization on DHSVM model based on a genetic algorithm
Changqing YAO1, Zhifeng YANG2()
1. Institute of Scientific and Technical Information of China, Beijing 100038, China; 2. State Key Laboratory of Water Environment Simulation, School of environment, Beijing Normal University, Beijing 100875, China
 Download: PDF(179 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Due to the multiplicity of factors including weather, the underlying surface and human activities, the complexity of parameter optimization for a distributed hydrological model of a watershed land surface goes far beyond the capability of traditional optimization methods. The genetic algorithm is a new attempt to find a solution to this problem. A genetic algorithm design on the Distributed-Hydrology-Soil-Vegetation model (DHSVM) parameter optimization is illustrated in this paper by defining the encoding method, designing the fitness value function, devising the genetic operators, selecting the arithmetic parameters and identifying the arithmetic termination conditions. Finally, a case study of the optimization method is implemented on the Lushi Watershed of the Yellow River Basin and achieves satisfactory results of parameter estimation. The result shows that the genetic algorithm is feasible in optimizing parameters of the DHSVM model.

Keywords genetic algorithm      DHSVM      parameters Optimization      Yellow River Basin     
Corresponding Author(s): YANG Zhifeng,Email:zfyang@bnu.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Changqing YAO,Zhifeng YANG. Parameters optimization on DHSVM model based on a genetic algorithm[J]. Front Earth Sci Chin, 2009, 3(3): 374-380.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0040-6
https://academic.hep.com.cn/fesci/EN/Y2009/V3/I3/374
namesymbolunitabsolute value rangestypical value rangesphysical meaning
minimum resistancersmins/mrsmin>0200-700minimum stomatal resistance
lateral conductivityKm/sK≥010-5-10-2lateral conductivity of soil water
exponential decreasefm-1f≥00-5exponential decrease coefficient
field capacityθfcm3/m3θwp<θfc<?0.18-0.41field capacity
porosity?m3/m3θfc<?<10.4-0.6soil porosity
Tab.1  Optimized parameters of DHSVM
Fig.1  Technical route of programming
No. of combinationnumber of populationprobability of crossoverprobability of mutationgeneration gapmaximum evolutionary algebra
1500.50.0170%1000
2501.00.190%1000
31000.50.0170%500
41001.00.190%500
Tab.2  Combinations of Genetic operation parameters
Fig.2  Convergence stability of genetic algorithm
scenariosMBREffCPU time-consuming/s
11.100.55215270
20.970.60223607
31.00.66225886
40.970.71212284
Tab.3  Comparison of results
Fig.3  Comparison between measured average run-off and calculated run-off monthly of Lushi Hydrological Station in 1980-1990
1 Arola A, Lettenmaier D P (1999). Effects of subgrid spatial heterogeneity on GCM-scale land surface energy and moisture fluxes. Water Resources Research , 35(1): 255-264
2 Cheng C T, OUB C P, Chau K W (2002). Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. Journal of hydrology , 268: 72-86
doi: 10.1016/S0022-1694(02)00122-1
3 Leung L R, Wigmosta M S (1999). Potential climate change impacts on mountain watersheds in the Pacific Northwest. Journal of American Water Resource Association , 35: 1463-1471
doi: 10.1111/j.1752-1688.1999.tb04230.x
4 Mckinney D C, Min D L (1994). Genetic algorithm solution of groundwater management models. Water Resources Research , 30(6): 1897-1906
doi: 10.1029/94WR00554
5 Michalewicz Z (2000). Evolved procedure-genetic algorithm and data coding union. Beijing: Scientific press. (in Chinese)
6 Nijssen B, Haddeland I, Lettenmaier D P (1997). Point evaluation of a surface hydrology model for BOREAS. Journal of geophysical research , 102: 29367-29378
doi: 10.1029/97JD01217
7 Storck P, Bowling L, Wetherbee P, Lettenmaier D (1998). Application of a GIS-based distributed hydrology model for prediction of forest harvest effects on peak stream flow in the Pacific Northwest. Hydrologic Processes , 12: 889-904
doi: 10.1002/(SICI)1099-1085(199805)12:6<889::AID-HYP661>3.0.CO;2-P
8 Wang Q J (1991). The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. Water Resources Research , 27(9): 2467-2471
doi: 10.1029/91WR01305
9 Wang S R, Huang R H, Ding Y H (2002a). Improvements of adistributed hydrology model DHSVM and its climatological-Hydrological off-line simulation experiments. ACTA Meteorologica sinica , 60(3): 290-300 (in Chinese)
10 Wang S R, Huang R H, Ding Y H (2002b). Numerical simulation experiments by nesting Hydrology model DHSVM with regional climate model regcm2/China. ACTA Meteorologica sinica , 60(4): 421-427 (in Chinese)
11 Westrick, K.J., Storck P, Mass C F (2002). Description and evaluation of a hydro meteorological forecast system for mountainous watersheds. Weather and Forecasting , 17: 250-262
doi: 10.1175/1520-0434(2002)017<0250:DAEOAH>2.0.CO;2
12 Wigmosta M S, Lettenmaier D P (1999). A comparison of simplified methods for routing topographically-driven subsurface flow. Water Resources Research , 35: 255-264
doi: 10.1029/1998WR900017
13 Wigmosta M S, Perkins W (2002). User's Guide for the Distributed Hydrology-Soil-Vegetation Model. Meteorology. Washington: Pacific Northwest National Laboratory
14 Wigmosta M S, Vail L, Lettenmaier D P (1994). A distributed hydrology-vegetation model for complex terrain. Water Resources Research , 30(6): 1665-1679
doi: 10.1029/94WR00436
15 Xiong L H, Guo S L (2004). Distributed Watershed Hydrological Model. Beijing: China Water Power Press (in Chinese)
16 Yang X H, Lu G H, Li J Q (2002). Applications of the hybrid accelerating generic algorithm to parameter optimization of basin model. Advances in Water Science , 13: 340-344 (in Chinese)
17 Yang X H, Shen Z Y (2005). Intelligent Algorithms and Their Applications in Resources and Environmental System Modeling. Beijing: Beijing Normal University press (in Chinese)
18 Yao C Q, Yang Z F, Zhao Y W (2006). Study on integration of distributed hydrology soil vegetation model and GIS. Journal of Soil and Water Conservation , 20(1):168-171 (in Chinese)
19 Zhou M, Sun S D (2002). Genetic algorithm principle and application. Beijing: National defense industry press (in Chinese)
[1] Hongjun SU, Shufang TIAN, Yue CAI, Yehua SHENG, Chen CHEN, Maryam NAJAFIAN. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery[J]. Front. Earth Sci., 2017, 11(4): 765-773.
[2] Jun QI, Jia WEI, Changhong SUN, Tao PAN. A comparative QSPR study on aqueous solubility of polycyclic aromatic hydrocarbons by GA-SVM, GA-RBFNN and GA-PLS[J]. Front Earth Sci, 2011, 5(3): 245-251.
[3] Xianglian LI, Qiong GAO, Tingwu LEI, Xiusheng YANG. Application of an integrative hydro-ecological model to study water resources management in the upper and middle parts of the Yellow River basin[J]. Front Earth Sci, 2011, 5(1): 45-55.
[4] Yu LI, Suocheng DONG, Chuansheng WANG, Xin’an DENG, Qiong GAO, Xianglian LI, Yuzhou LUO, Xiusheng YANG, . Impact of irrigation and other inputs on farm productivity in the upper and middle parts of the Yellow River basin, China[J]. Front. Earth Sci., 2010, 4(3): 345-356.
[5] Xianglian LI, Xiusheng YANG, Qiong GAO, Yu LI, Suocheng DONG. Integrative assessment of hydrological, ecological, and economic systems for water resources management at river basin scale[J]. Front Earth Sci Chin, 2009, 3(2): 198-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed