Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2009, Vol. 3 Issue (4) : 445-451    https://doi.org/10.1007/s11707-009-0052-2
Research articles
n -alkanol ratios as proxies of paleovegetation and paleoclimate in a peat-lacustrine core in southern China since the last deglaciation
Yanhong ZHENG1,Shucheng XIE2,Xiaomin LIU3,Weijian ZHOU4,Philip A. MEYERS5,
1.State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China;Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430074, China;State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China; 2.Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430074, China; 3.State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China; 4.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China; 5.Department of Geological Sciences, The University of Michigan, Ann Arbor, MI 48109-1005, USA;
 Download: PDF(212 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High resolution records of long chain n-alkanol biomarkers were obtained from a peat-lacustrine core from the Dingnan profile in southern China. The n-alkanol distributions are characterized by the predominance of even-over-odd carbon number and maximize at C24 or C26. On the basis of the reported n-alkanol records in the literature and the n-alkane record in our samples, we concluded that the n-alkanol ratio of C26/C30 varying from 1.25 to 6.48, together with the n-alkanol ratio C22/C24 less than unity, is indicative of the presence of a dominant forest paleovegetation. A 2000-year cycling in the variation of the n-alkanol ratio C26/C30 is identifiable in our profile, and probably results from the change in the abundance of the grass relative to trees induced by a cyclic paleoclimate. The n-alkanol ratio C24/C26 appears to be more sensitive to change in precipitation than in temperature, and may be a potential indicator of precipitation/humidity, with increased values being associated with relatively dry conditions. The paleovegetation and the paleoclimate reconstructed on the basis of the n-alkanol records for the recent 18000 cal a BP in general accord with the pollen data and other lipid evidence recorded in the Dingnan region in southern China. In particular, both the n-alkanol records and the pollen data infer the different paleoclimate conditions for the two peat sequences, with a cool and wet climate dominating in the lower peat deposition formed during the latest Pleistocene and a change to a drier and cooler climate occurring in the upper peat sequence in mid-Holocene.
Keywords southern China      n-alkanols      lipids      paleovegetation and paleoclimate      geobiology      
Issue Date: 05 December 2009
 Cite this article:   
Xiaomin LIU,Philip A. MEYERS,Yanhong ZHENG, et al. n -alkanol ratios as proxies of paleovegetation and paleoclimate in a peat-lacustrine core in southern China since the last deglaciation[J]. Front. Earth Sci., 2009, 3(4): 445-451.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0052-2
https://academic.hep.com.cn/fesci/EN/Y2009/V3/I4/445
Bull I D, van Bergen P F, Nott C J, Poulton P R, Evershed R P(2000). Organicgeochemical studies of soils from the Rothamsted classical experiments—V.The fate of lipids in different long-term experiments. Organic Geochemistry, 31: 389–408

doi: 10.1016/S0146-6380(00)00008-5
Cranwell P A(1984). Lipid geochemistry of sediments from Upton Broad, asmall productive lake. Organic Geochemistry, 7: 25–37

doi: 10.1016/0146-6380(84)90134-7
Dalton C, Birks H J B, Brooks S J, Cameron N G, Evershed R P, Peglar S M, Scott J A, Thompson R(2005). A multi-proxy studyof lake-development in response to catchment changes during the Holoceneat Lochnagar, North-East Scotland. Palaeogeography,Palaeoclimatology, Palaeoecology, 221: 175–201

doi: 10.1016/j.palaeo.2005.02.007
Ficken K J, Barber K E, Eglinton G(1998a). Lipid biomarker, δ13C andplant macrofossil stratigraphy of a Scottish montane peat bog overthe last two millennia. Organic Geochemistry, 28: 217–237

doi: 10.1016/S0146-6380(97)00126-5
Ficken K J, Li B, Swain D L, Eglinton G(2000). An n-alkane proxyfor the sedimentary inputs of submerged/floating freshwater aquaticmacrophytes. Organic Geochemistry, 31: 745–749

doi: 10.1016/S0146-6380(00)00081-4
Ficken K J, Street-Perrott FA, Perrott R A, Swain D L, Olago D O, Eglinton G(1998b). Glacial/interglacial variationsin carbon cycling revealed by molecular and isotope stratigraphy ofLake Nkunga, Mt. Kenya, East Africa. OrganicGeochemistry, 29: 1701–1719
Huang Y, Street-Perrott FA, Perrott R A, Metzger P, Eglinton G(1999). Glacial-interglacialenvironmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochimica et Cosmochimica Acta, 63: 1383–1404

doi: 10.1016/S0016-7037(99)00074-5
Hughen K A, Eglinton T I, Xu L, Makou M(2004). Abrupt tropical vegetation response to rapid climate changes. Science, 304: 1955–1959

doi: 10.1126/science.1092995
Jansen B, Haussmann N S, Tonneijck F H, Verstraten J M, de Voogt T(2008). Characteristicstraight-chain lipid ratios as a quick method to assess past forest-páramotransitions in the Ecuadorian Andes. Palaeogeography,Palaeoclimatology, Palaeoecology, 262: 129–139

doi: 10.1016/j.palaeo.2008.02.007
Jansen B, Nierop K G J, Hageman J A, Cleef A, Verstraten J M(2006). The straightchainlipid biomarker composition of plant species responsible for the dominantbiomass production along two altitudinal transects in the EcuadorianAndes. Organic Geochemistry, 37: 1514–1536

doi: 10.1016/j.orggeochem.2006.06.018
Meyer P A, Ishiwatari R(1993). Lacustineorganic geochemistry: an overview of indicators of organic sourcesand diagenesis in lake sediments. OrganicGeochemistry, 20: 867–900

doi: 10.1016/0146-6380(93)90100-P
Moucawi J, Fustec E, Jambu P A A, Jacquesy R(1981a). Biooxidation of added and natural hydrocarbons in soils:effect of iron. Soil Biology& Biochemistry, 13: 335–342

doi: 10.1016/0038-0717(81)90073-0
Moucawi J, Fustec E, Jambu P, Jacquesy R(1981b). Decomposition of lipids in soils: free and esterifiedfatty acids, alcohols and ketones. SoilBiology & Biochemistry, 13: 461–468

doi: 10.1016/0038-0717(81)90035-3
Naafs D F W, van Bergen P F, Boogert S J, de Leeuw J W(2004). Solvent-extractable lipids in an acid andic forest soil:variations with depth and season. SoilBiology & Biochemistry, 36: 297–308

doi: 10.1016/j.soilbio.2003.10.005
Nierop K G J, Jansen B, Hageman J A, Verstrate J M(2006). The complementarity of extractable and ester-bound lipidsin a soil profile under pine. Plant Soil, 286: 269–285

doi: 10.1007/s11104-006-9043-1
Nierop K G J, Tonneijck F H, Jansen B, Verstraten J M(2007). Oranic matter in volcanic ash soils under forest andpáramo along an Ecuadorian altitudinal transect. Soil Science Society of America Journal, 71: 1119–1127

doi: 10.2136/sssaj2006.0322
Nott C J, Xie S, Avsejs L A, Maddy D, Chambers F M, Evershed R P(2000). n-alkane distributions in ombrotrophic mires as indicators of vegetationchange related to climatic variation. OrganicGeochemistry, 31: 231–235

doi: 10.1016/S0146-6380(99)00153-9
Rieley G, Collier R J, Jones D M, Eglinton G(1991). The biogeochemistry of Ellesme Lake, UK–I: sourcecorrelation of leaf wax inputs to the sedimentary lipid record. Organic Geochemistry, 17: 901–912

doi: 10.1016/0146-6380(91)90031-E
Schwark L, Zink K, Lechterbeck J(2002). Reconstruction of postglacial toearly Holocene vegetation history in terrestrial Central Europe viacuticular lipid biomarkers and pollen records from lake sediments. Geology, 30: 463–466

doi: 10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2
Stuiver M, Reimer P J(1993). Extended 14C data-base and revised Calib 3.1 14C age calibration program. Radiocarbon, 35: 215–230
Stuiver M, Reimer P J, Bard E, Beck J W, Burr G S, Hughen K A, Kromer B, McCormac G, van der Plicht J, Spurk M(1998). INTCAL98Radiocarbon age calibration. Radiocarbon, 40: 1041–1083
Sun X J, Luo Y L(2004). Frompollen record to paleovegetation: Reply to “A discussion onthe vegetation types during LAST DEGLACIATION time in South China”. Quaternary Sciences, 24(2): 217–221(in Chinese with Englishabstract)
Tulloch A(1976). Chemistry of waxes of higher plants. In:Kolattukudy P, ed. Chemistry and Biochemistry of Natural Waxes. Amsterdam: Elsevier , 201–235
van Bergen P F, Bull I D, Poulton P R, Evershed R P(1997). Organic geochemical studies of soils from the RothamstedClassical Experiments — I. Total lipid extracts, solvent insolubleresidues and humic acids from Broadbalk Wilderness. Organic Geochemistry, 26: 117–135

doi: 10.1016/S0146-6380(96)00134-9
van Bergen P F, Nott C J, Bull I D, Poulton P R, Evershed R P(1998). Organicgeochemical studies of soils from the Rothamsted Classical Experiments– IV. Preliminaryresults from a study of the effect of soilpH on organic matter decay. Organic Geochemistry, 29: 1779–1795

doi: 10.1016/S0146-6380(98)00188-0
Wang R J, Li J(2003). Quaternaryhigh-resolution opal records and its paleo productivity implicationat ODP site 1143. Chinese Science Bulletin, 48(4): 363–367

doi: 10.1360/03tb9077
Wang Y J, Cheng H, Lawrence Edwards R, He Y, Kong X G, An Z S, Wu J Y, Kelly M J, Dykoski C A, Li X D(2005). The HoloceneAsian Monsoon: Links to solar changes and North Atlantic climate. Science, 308(6): 854–857

doi: 10.1126/science.1106296
Wu G X, Sun X J(2000). LateQuaternary organic-wall Phytoplankton record in northern slope ofSouth China Sea and its paleoenvironmental significance. Marine Geology and Quaternary Geology, 20(2):57–63 (in Chinesewith English abstract)
Xie S, Evershed R P(2002). The climaticand biological change information from the peat molecular fossil records. Chinese Science Bulletin, 46: 1–5
Xie S, Nott C J, Avsejs L A, Maddy D, Chambers F, Evershed R P(2004). Molecular and isotopic stratigraphy in an ombrotrophicmire for palaeoclimate reconstruction. Geochimica et Cosmochimica Acta, 68: 2849–2862

doi: 10.1016/j.gca.2003.08.025
Xie S, Nott C J, Avsejs L A, Volders F, Maddy D, Chambers F M, Gledhill A, Carter J F, Evershed R P(2000). Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophicpeat. Organic Geochemistry, 31: 1053–1057

doi: 10.1016/S0146-6380(00)00116-9
Zhang Z H, Zhao M X, Eglinton G, Lu H Y, Huang C Y(2006). Leaf wax lipids aspaleovegetational and paleoenvironmental proxies for the Chinese LoessPlateau over the last 170 ka. QuaternaryScience Reviews, 25: 575–594

doi: 10.1016/j.quascirev.2005.03.009
Zheng Y H, Zhou W J, Meyers P A, Xie S(2007). Lipid biomarkers in the Zoige-Hongyuan peat deposit: indicators ofHolocene climate change in west China. Organic Geochemistry38: 1927–1940

doi: 10.1016/j.orggeochem.2007.06.012
Zheng Y H, Zhou W J, Xie S C, Yu X F(2009). A comparative study of n-alkane biomarker and pollen records: anexample from southern China. Chinese ScienceBulletin, 54: 1065–1072

doi: 10.1007/s11434-008-0563-3
Zheng Z(2004). Holocene environmental changes in the tropical and subtropicalareas of the south China and the relation to human activities. Quaternary Science, 24 (4): 390–391 (in Chinese with Englishabstract)
Zhou W J, Xie S, Meyers P A, Zheng Y(2005). Reconstruction of late glacial and Holocene climate evolution insouthern China from geolipids and pollen in the Dingnan peat sequence. Organic Geochemistry, 36: 1272–1284

doi: 10.1016/j.orggeochem.2005.04.005
Zhou W J, Yu X F, Jull A J, Burr G, Xiao J Y, Lu X F, Xian F(2004). High-resolutionevidence from southern China of an early Holocene optimum and a mid-Holocenedry event during the past 18000 years. Quaternary Research, 62: 39–48
[1] Canfa WANG, Hongbin ZHANG, Xianyu HUANG, Junhua HUANG, Shucheng XIE. Optimization of acid digestion conditions on the extraction of fatty acids from stalagmites[J]. Front Earth Sci, 2012, 6(1): 109-114.
[2] Shucheng XIE, Yongbiao WANG. Geomicrobiological perspective on the pattern and causes of the 5-million-year Permo/Triassic biotic crisis[J]. Front Earth Sci, 2011, 5(1): 23-36.
[3] XIE Shucheng, YIN Hongfu, XIE Xinong, QIN Jianzhong, HU Chaoyong, YAN Jiaxin, WANG Yongbiao, HUANG Junhua, ZHOU Lian, YANG Xianghua, XU Sihuang. On the geobiological evaluation of hydrocarbon source rocks[J]. Front. Earth Sci., 2007, 1(4): 389-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed