|
|
|
n -alkanol
ratios as proxies of paleovegetation and paleoclimate in a peat-lacustrine
core in southern China since the last deglaciation |
| Yanhong ZHENG1,Shucheng XIE2,Xiaomin LIU3,Weijian ZHOU4,Philip A. MEYERS5, |
| 1.State Key Laboratory
of Continental Dynamics, Department of Geology, Northwest University,
Xi’an 710069, China;Key Laboratory of Biogeology
and Environmental Geology of Ministry of Education, China University
of Geosciences, Wuhan 430074, China;State Key Laboratory
of Loess and Quaternary Geology, Institute of Earth Environment, Chinese
Academy of Sciences, Xi’an 710075, China; 2.Key Laboratory of Biogeology
and Environmental Geology of Ministry of Education, China University
of Geosciences, Wuhan 430074, China; 3.State Key Laboratory
of Continental Dynamics, Department of Geology, Northwest University,
Xi’an 710069, China; 4.State Key Laboratory
of Loess and Quaternary Geology, Institute of Earth Environment, Chinese
Academy of Sciences, Xi’an 710075, China; 5.Department of Geological
Sciences, The University of Michigan, Ann Arbor, MI 48109-1005, USA; |
|
|
|
|
Abstract High resolution records of long chain n-alkanol biomarkers were obtained from a peat-lacustrine core from the Dingnan profile in southern China. The n-alkanol distributions are characterized by the predominance of even-over-odd carbon number and maximize at C24 or C26. On the basis of the reported n-alkanol records in the literature and the n-alkane record in our samples, we concluded that the n-alkanol ratio of C26/C30 varying from 1.25 to 6.48, together with the n-alkanol ratio C22/C24 less than unity, is indicative of the presence of a dominant forest paleovegetation. A 2000-year cycling in the variation of the n-alkanol ratio C26/C30 is identifiable in our profile, and probably results from the change in the abundance of the grass relative to trees induced by a cyclic paleoclimate. The n-alkanol ratio C24/C26 appears to be more sensitive to change in precipitation than in temperature, and may be a potential indicator of precipitation/humidity, with increased values being associated with relatively dry conditions. The paleovegetation and the paleoclimate reconstructed on the basis of the n-alkanol records for the recent 18000 cal a BP in general accord with the pollen data and other lipid evidence recorded in the Dingnan region in southern China. In particular, both the n-alkanol records and the pollen data infer the different paleoclimate conditions for the two peat sequences, with a cool and wet climate dominating in the lower peat deposition formed during the latest Pleistocene and a change to a drier and cooler climate occurring in the upper peat sequence in mid-Holocene.
|
| Keywords
southern China
n-alkanols
lipids
paleovegetation and paleoclimate
geobiology
|
|
Issue Date: 05 December 2009
|
|
|
Bull I D, van Bergen P F, Nott C J, Poulton P R, Evershed R P(2000). Organicgeochemical studies of soils from the Rothamsted classical experiments—V.The fate of lipids in different long-term experiments. Organic Geochemistry, 31: 389–408
doi: 10.1016/S0146-6380(00)00008-5
|
|
Cranwell P A(1984). Lipid geochemistry of sediments from Upton Broad, asmall productive lake. Organic Geochemistry, 7: 25–37
doi: 10.1016/0146-6380(84)90134-7
|
|
Dalton C, Birks H J B, Brooks S J, Cameron N G, Evershed R P, Peglar S M, Scott J A, Thompson R(2005). A multi-proxy studyof lake-development in response to catchment changes during the Holoceneat Lochnagar, North-East Scotland. Palaeogeography,Palaeoclimatology, Palaeoecology, 221: 175–201
doi: 10.1016/j.palaeo.2005.02.007
|
|
Ficken K J, Barber K E, Eglinton G(1998a). Lipid biomarker, δ13C andplant macrofossil stratigraphy of a Scottish montane peat bog overthe last two millennia. Organic Geochemistry, 28: 217–237
doi: 10.1016/S0146-6380(97)00126-5
|
|
Ficken K J, Li B, Swain D L, Eglinton G(2000). An n-alkane proxyfor the sedimentary inputs of submerged/floating freshwater aquaticmacrophytes. Organic Geochemistry, 31: 745–749
doi: 10.1016/S0146-6380(00)00081-4
|
|
Ficken K J, Street-Perrott FA, Perrott R A, Swain D L, Olago D O, Eglinton G(1998b). Glacial/interglacial variationsin carbon cycling revealed by molecular and isotope stratigraphy ofLake Nkunga, Mt. Kenya, East Africa. OrganicGeochemistry, 29: 1701–1719
|
|
Huang Y, Street-Perrott FA, Perrott R A, Metzger P, Eglinton G(1999). Glacial-interglacialenvironmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake, Mt. Kenya. Geochimica et Cosmochimica Acta, 63: 1383–1404
doi: 10.1016/S0016-7037(99)00074-5
|
|
Hughen K A, Eglinton T I, Xu L, Makou M(2004). Abrupt tropical vegetation response to rapid climate changes. Science, 304: 1955–1959
doi: 10.1126/science.1092995
|
|
Jansen B, Haussmann N S, Tonneijck F H, Verstraten J M, de Voogt T(2008). Characteristicstraight-chain lipid ratios as a quick method to assess past forest-páramotransitions in the Ecuadorian Andes. Palaeogeography,Palaeoclimatology, Palaeoecology, 262: 129–139
doi: 10.1016/j.palaeo.2008.02.007
|
|
Jansen B, Nierop K G J, Hageman J A, Cleef A, Verstraten J M(2006). The straightchainlipid biomarker composition of plant species responsible for the dominantbiomass production along two altitudinal transects in the EcuadorianAndes. Organic Geochemistry, 37: 1514–1536
doi: 10.1016/j.orggeochem.2006.06.018
|
|
Meyer P A, Ishiwatari R(1993). Lacustineorganic geochemistry: an overview of indicators of organic sourcesand diagenesis in lake sediments. OrganicGeochemistry, 20: 867–900
doi: 10.1016/0146-6380(93)90100-P
|
|
Moucawi J, Fustec E, Jambu P A A, Jacquesy R(1981a). Biooxidation of added and natural hydrocarbons in soils:effect of iron. Soil Biology& Biochemistry, 13: 335–342
doi: 10.1016/0038-0717(81)90073-0
|
|
Moucawi J, Fustec E, Jambu P, Jacquesy R(1981b). Decomposition of lipids in soils: free and esterifiedfatty acids, alcohols and ketones. SoilBiology & Biochemistry, 13: 461–468
doi: 10.1016/0038-0717(81)90035-3
|
|
Naafs D F W, van Bergen P F, Boogert S J, de Leeuw J W(2004). Solvent-extractable lipids in an acid andic forest soil:variations with depth and season. SoilBiology & Biochemistry, 36: 297–308
doi: 10.1016/j.soilbio.2003.10.005
|
|
Nierop K G J, Jansen B, Hageman J A, Verstrate J M(2006). The complementarity of extractable and ester-bound lipidsin a soil profile under pine. Plant Soil, 286: 269–285
doi: 10.1007/s11104-006-9043-1
|
|
Nierop K G J, Tonneijck F H, Jansen B, Verstraten J M(2007). Oranic matter in volcanic ash soils under forest andpáramo along an Ecuadorian altitudinal transect. Soil Science Society of America Journal, 71: 1119–1127
doi: 10.2136/sssaj2006.0322
|
|
Nott C J, Xie S, Avsejs L A, Maddy D, Chambers F M, Evershed R P(2000). n-alkane distributions in ombrotrophic mires as indicators of vegetationchange related to climatic variation. OrganicGeochemistry, 31: 231–235
doi: 10.1016/S0146-6380(99)00153-9
|
|
Rieley G, Collier R J, Jones D M, Eglinton G(1991). The biogeochemistry of Ellesme Lake, UK–I: sourcecorrelation of leaf wax inputs to the sedimentary lipid record. Organic Geochemistry, 17: 901–912
doi: 10.1016/0146-6380(91)90031-E
|
|
Schwark L, Zink K, Lechterbeck J(2002). Reconstruction of postglacial toearly Holocene vegetation history in terrestrial Central Europe viacuticular lipid biomarkers and pollen records from lake sediments. Geology, 30: 463–466
doi: 10.1130/0091-7613(2002)030<0463:ROPTEH>2.0.CO;2
|
|
Stuiver M, Reimer P J(1993). Extended 14C data-base and revised Calib 3.1 14C age calibration program. Radiocarbon, 35: 215–230
|
|
Stuiver M, Reimer P J, Bard E, Beck J W, Burr G S, Hughen K A, Kromer B, McCormac G, van der Plicht J, Spurk M(1998). INTCAL98Radiocarbon age calibration. Radiocarbon, 40: 1041–1083
|
|
Sun X J, Luo Y L(2004). Frompollen record to paleovegetation: Reply to “A discussion onthe vegetation types during LAST DEGLACIATION time in South China”. Quaternary Sciences, 24(2): 217–221(in Chinese with Englishabstract)
|
|
Tulloch A(1976). Chemistry of waxes of higher plants. In:Kolattukudy P, ed. Chemistry and Biochemistry of Natural Waxes. Amsterdam: Elsevier , 201–235
|
|
van Bergen P F, Bull I D, Poulton P R, Evershed R P(1997). Organic geochemical studies of soils from the RothamstedClassical Experiments — I. Total lipid extracts, solvent insolubleresidues and humic acids from Broadbalk Wilderness. Organic Geochemistry, 26: 117–135
doi: 10.1016/S0146-6380(96)00134-9
|
|
van Bergen P F, Nott C J, Bull I D, Poulton P R, Evershed R P(1998). Organicgeochemical studies of soils from the Rothamsted Classical Experiments– IV. Preliminaryresults from a study of the effect of soilpH on organic matter decay. Organic Geochemistry, 29: 1779–1795
doi: 10.1016/S0146-6380(98)00188-0
|
|
Wang R J, Li J(2003). Quaternaryhigh-resolution opal records and its paleo productivity implicationat ODP site 1143. Chinese Science Bulletin, 48(4): 363–367
doi: 10.1360/03tb9077
|
|
Wang Y J, Cheng H, Lawrence Edwards R, He Y, Kong X G, An Z S, Wu J Y, Kelly M J, Dykoski C A, Li X D(2005). The HoloceneAsian Monsoon: Links to solar changes and North Atlantic climate. Science, 308(6): 854–857
doi: 10.1126/science.1106296
|
|
Wu G X, Sun X J(2000). LateQuaternary organic-wall Phytoplankton record in northern slope ofSouth China Sea and its paleoenvironmental significance. Marine Geology and Quaternary Geology, 20(2):57–63 (in Chinesewith English abstract)
|
|
Xie S, Evershed R P(2002). The climaticand biological change information from the peat molecular fossil records. Chinese Science Bulletin, 46: 1–5
|
|
Xie S, Nott C J, Avsejs L A, Maddy D, Chambers F, Evershed R P(2004). Molecular and isotopic stratigraphy in an ombrotrophicmire for palaeoclimate reconstruction. Geochimica et Cosmochimica Acta, 68: 2849–2862
doi: 10.1016/j.gca.2003.08.025
|
|
Xie S, Nott C J, Avsejs L A, Volders F, Maddy D, Chambers F M, Gledhill A, Carter J F, Evershed R P(2000). Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophicpeat. Organic Geochemistry, 31: 1053–1057
doi: 10.1016/S0146-6380(00)00116-9
|
|
Zhang Z H, Zhao M X, Eglinton G, Lu H Y, Huang C Y(2006). Leaf wax lipids aspaleovegetational and paleoenvironmental proxies for the Chinese LoessPlateau over the last 170 ka. QuaternaryScience Reviews, 25: 575–594
doi: 10.1016/j.quascirev.2005.03.009
|
|
Zheng Y H, Zhou W J, Meyers P A, Xie S(2007). Lipid biomarkers in the Zoige-Hongyuan peat deposit: indicators ofHolocene climate change in west China. Organic Geochemistry38: 1927–1940
doi: 10.1016/j.orggeochem.2007.06.012
|
|
Zheng Y H, Zhou W J, Xie S C, Yu X F(2009). A comparative study of n-alkane biomarker and pollen records: anexample from southern China. Chinese ScienceBulletin, 54: 1065–1072
doi: 10.1007/s11434-008-0563-3
|
|
Zheng Z(2004). Holocene environmental changes in the tropical and subtropicalareas of the south China and the relation to human activities. Quaternary Science, 24 (4): 390–391 (in Chinese with Englishabstract)
|
|
Zhou W J, Xie S, Meyers P A, Zheng Y(2005). Reconstruction of late glacial and Holocene climate evolution insouthern China from geolipids and pollen in the Dingnan peat sequence. Organic Geochemistry, 36: 1272–1284
doi: 10.1016/j.orggeochem.2005.04.005
|
|
Zhou W J, Yu X F, Jull A J, Burr G, Xiao J Y, Lu X F, Xian F(2004). High-resolutionevidence from southern China of an early Holocene optimum and a mid-Holocenedry event during the past 18000 years. Quaternary Research, 62: 39–48
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|