Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2009, Vol. 3 Issue (4) : 480-489    https://doi.org/10.1007/s11707-009-0055-z
Research articles
Thin layer molecularly imprinted composite membranes for selective separation of erythromycin from water
Jinyang YU,Xiaoling HU,Dapeng LI,Cuicui JIAO,
Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, Xi’an 710129, China;
 Download: PDF(396 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Molecularly imprinted composite membranes for selective binding of erythromycin were synthesized by UV initiated photo-copolymerization using polysulfone ultrafiltration (PSF) membranes as porous supports. The thin imprinted layers deposited on the surface of the support membranes were formed by copolymerization of acrylic acid (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker in the presence of erythromycin as template molecule in acetonitrile solution. Fourier transform infrared spectroscopy (FT-IR) was used to study the binding mechanism between the imprinted sites and the template. Scanning electron microscope (SEM) was utilized to visualize surface and cross-sections of membranes to gain better understanding in the analysis of imprinted layers deposited on PSF support membranes. The modification degrees for imprinted and nonimprinted membranes are 2.04 and 2.15mg/cm2, respectively. Static equilibrium binding and recognition properties of the imprinted and nonimprinted membranes to erythromycin (EM) and its analogue roxithromycin (RM) in aqueous system were tested. The results showed that saturated binding capacity of imprinted membranes to erythromycin was about 0.185mg/cm2, nearly eight times that of nonimprinted ones, and the selectivity factor of αEM/RM was 3.24. The results of this study implied that the synthesized molecularly imprinted composite membranes could be used as selective separation materials for erythromycin enrichment from water.
Keywords molecularly imprinted composite membranes      erythromycin      selective separation      polysulfone      photo-copolymerization      
Issue Date: 05 December 2009
 Cite this article:   
Jinyang YU,Dapeng LI,Xiaoling HU, et al. Thin layer molecularly imprinted composite membranes for selective separation of erythromycin from water[J]. Front. Earth Sci., 2009, 3(4): 480-489.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-009-0055-z
https://academic.hep.com.cn/fesci/EN/Y2009/V3/I4/480
Baker R W (2004). Membrane Technology and Applications, 2nd ed. Chichester: Wiley

doi: 10.1002/0470020393
Golet E M, Alder A C, Hartmann A, Ternes T A, Giger W (2001). Tracedetermination of fluoroquinolone antibacterial agents in urban wastewaterby solid-phase extraction and liquid chromatography with fluorescencedetection. Anal Chem, 73(15): 3632–3638

doi: 10.1021/ac0015265
Haupt K, Mosbach K (2000). Molecularlyimprinted polymers and their use in biomimetic sensors. Chem Rev, 100(7): 2495–2504

doi: 10.1021/cr990099w
Hirsch R, Ternes T A, Haberer K, Mehlich A, Ballwanz F, Kratz K L (1998). Determination of antibiotics in differentwater compartments via liquid chromatography-electrospray tandem massspectrometry. J Chromatogr A, 815(2): 213–223

doi: 10.1016/S0021-9673(98)00335-5
Ho W S W, Sirkar K K (1992). MembraneHandbook. New York: WNR
Klein E (2000). Affinity membranes: a 10-year review. J Membr Sci, 179(1―2): 1–27

doi: 10.1016/S0376-7388(00)00514-7
Kobayashi T, Fukaya T, Abe M, Fujii N (2002). Phase inversion molecular imprinting by using template copolymersfor high substrate recognition. Langmuir, 18(7): 2866–2872

doi: 10.1021/la0106586
Leal C, Codony R, Compano R, Granados M, Prat M D (2001). Determinationof macrolide antibiotics by liquid chromatography. J Chromatogr A, 910(2): 285–290

doi: 10.1016/S0021-9673(00)01231-0
Mosbach K, Haupt K (1998). Some newdevelopments and challenges in noncovalent molecular imprinting technology. J. Mol. Recogn., 11(1–6): 62–68
Piletsky S A, Dubei I Y, Fedroyak D M, Kukhar V P (1990). Sustrate-selective polymeric membranes: selective transferof nucleic acid components. Biopolym Kletka, 6: 55–58
Piletsky S A, Panasyuk T L, Piletskaya E V, et al (1999). Receptor and transport propertiesof imprinted polymer membranes: a review. J Membr Sci, 157(2): 263–278

doi: 10.1016/S0376-7388(99)00007-1
Piletsky S A, Piletskaya E V, Panasyuk T L, El'skaya A V, Levi R, Karube I, Wulff G (1998). Imprinted membranes for sensor technology: opposite behavior of covalentlyand noncovalently imprinted membranes. Macromolecules, 31(7): 2137–2140

doi: 10.1021/ma970818d
Ramamoorthy M, Ulbricht M (2003). Molecularimprinting of cellulose acetate-sulfonated polysulfone blend membranesfor Rhodamine B by phase inversion technique. J Membr Sci, 217(1): 207–214

doi: 10.1016/S0376-7388(03)00133-9
Richard J A (2004). Molecularly imprinted polymers in pseudoimmunoassay. J Chromatogr B, 804(1): 151–165

doi: 10.1016/j.jchromb.2004.02.022
Sanbe H, Hosaka K, Haginaka J (2003). Preparation of uniformly sized molecularlyimprinted polymers for phenolic compounds and their application tothe assay of bisphenol A in river water. Anal Sci, 19(5): 715–719

doi: 10.2116/analsci.19.715
Sellergren B (2001). Imprinted chiral stationary phases in high-performanceliquid chromatography. J Chromatogr A, 906(1―2): 227–252

doi: 10.1016/S0021-9673(00)00929-8
Sergeeva T A, Piletsky S A, Piletskaya E V, Brovko O O, Karabanova L V, Sergeeva L M, El'skaya A V, Turner A P (2003). In situformation of porous molecularly imprinted polymer membranes. Macromolecules, 36(19): 7352–7357

doi: 10.1021/ma030105x
Suedee R, Srichana T, Chuchome T, Kongmark U (2004). Use of molecularly imprinted polymers from a mixtureof tetracycline and its degradation products to produce affinity membranesfor the removal of tetracycline from water. J Chromatogr B, 811(2): 191–200
Takeda K, Kobayashi T (2005). Bisphenola imprinted polymer adsorbents with selective recognition and bindingcharacteristics. Sci Technol Adv Mater, 6: 165–171

doi: 10.1016/j.stam.2004.11.008
Ulbricht M (2004). Membrane separations using molecularly imprinted polymers. J Chromatogr B, 804(1): 113–125

doi: 10.1016/j.jchromb.2004.02.007
Ulbricht M (2006). Advanced functional polymer membranes. Polymer, 47(7): 2217–2262

doi: 10.1016/j.polymer.2006.01.084
Wang H Y, Kobayashi T, Fujii N (1996). Molecular imprint membranes preparedby the phase inversion precipitation technique. Langmuir, 12: 4850–4856

doi: 10.1021/la960243y
Wulff G, Sarhan A (1972). Use ofpolymers with enzyme-analogous structures for the resolution of racemates.Angew Chem Int Ed Eng, 11: 341–343
Wullf G (2002). Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev, 102(1): 1–28

doi: 10.1021/cr980039a
Yang H H, Zhang S Q, Yang W, Chen X L, Zhuang Z X, Xu J G, Wang X R (2004). Molecularlyimprinted sol-gel nanotubes membrane for biochemical separations. J Am Chem Soc, 126(13): 4054–4055

doi: 10.1021/ja0389570
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed