Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2010, Vol. 4 Issue (2) : 152-159    https://doi.org/10.1007/s11707-010-0018-4
Research articles
Features of ferric sulfate precipitates formed by different cultivations of Acidithiobacillus ferrooxidans
Xin WANG,Yan LI,Anhuai LU,Changqiu WANG,
The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China;
 Download: PDF(285 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This study focused on the ferric sulfate precipitates formed during the culture of Acidithiobacillus ferrooxidans (A. ferrooxidans) in a modified 9K medium by applying a potential control on the electrode. X-ray diffraction (XRD), environmental scanning electron microscope (ESEM), Raman spectroscopy (Raman) and Fourier Transform Infrared spectroscopy (FTIR) were carried out to characterize and identify the precipitates which were formed, respectively, in the electrochemical cultivation with a fixed cathode potential (bias-experiment) and in the conventional batch cultivation without cathode potential control (no-bias-experiment). The results indicated that K-jarosite presented in both experiments while NH4-jarosite and schwertmannite were only found in the no-bias-experiment. The formation of different precipitates could be attributed to the different growth statuses and rates of A. ferrooxidans and the different concentrations of Fe3+. In the bias-experiment, external electrons reproduced Fe2+ and promoted the growth of A. ferrooxidans, thus resulting in the low Fe3+ concentration and the rapid depletion of NH4+ as the nitrogen source, in which K-jarosite was preferentially formed. In the no-bias- experiment, the lower concentration of A. ferrooxidans was observed, which was due to the continuous consumption of Fe2+ by bacteria, thus resulting in the relatively higher Fe3+ and the NH4+ concentration in culture. The high concentration of Fe3+ favored the precipitation of the solid solution of K-NH4-H3O jarosite, and led to the formation of schwertmannite after K+ and NH4+ were depleted.
Keywords Acidithiobacillus ferrooxidans      electrochemical cultivation      schwertmannite      jarosite      
Issue Date: 05 June 2010
 Cite this article:   
Xin WANG,Yan LI,Anhuai LU, et al. Features of ferric sulfate precipitates formed by different cultivations of Acidithiobacillus ferrooxidans[J]. Front. Earth Sci., 2010, 4(2): 152-159.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-010-0018-4
https://academic.hep.com.cn/fesci/EN/Y2010/V4/I2/152
Basciano L C, Peterson R C(2007). The crystal structure of ammoniojarosite, (NH4)Fe3(SO4)2(OH)6 and the crystalchemistry of the ammoniojarosite-hydronium jarosite solid-solutionseries. Mineralogical Magazine, 71 (4): 427―441

doi: 10.1180/minmag.2007.071.4.427
Bigham J M(1994). Schwertmannite, a new iron oxyhydroxysulphatefrom Pyhäsalmi, Finland, and other localities. Mineralogical Magazine, 58: 641―648

doi: 10.1180/minmag.1994.058.393.14
Bigham J M, Schwertmann U, Traina S J, Winland R L, Wolf M(1996). Schwertmannite and the chemical modeling of iron in acid sulfatewaters. Geochimica et Cosmochimica Acta, 60 (12): 2111―2121

doi: 10.1016/0016-7037(96)00091-9
Blake R C, Howard G T, McGinness S(1994). Enhancedyields of iron-oxidizing bacteria by in situ electrochemical reductionof soluble iron in the growth medium. AppliedEnvironmental Microbiology, 60: 2704―2710
Burton E D, Bush R T, Johnston S G, Watling K M, Hocking R K, Sullivan L A, Parker G K(2009). Sorption of Arsenic (V) and Arsenic(III) to Schwertmannite. EnvironmentalScience & Technology, 43 (24): 9202―9207

doi: 10.1021/es902461x
Colmer A R, Hinkle M E(1947). The Role of Microorganisms in Acid Mine Drainage: APreliminary Report. Science, 106 (2751): 253―256

doi: 10.1126/science.106.2751.253
Colmer A R, Temple K L, Hinkle M E(1949). An iron-oxidizingbacterium from the acid drainage of some bituminous coal mines. The American Society for Microbiology, 59: 317―328
Drouet C, Navrotsky A(2003). Synthesis, characterization and thermochemistry of K-Na-H3O jarosites. Geochimica etCosmochimica Acta, 67 (11): 2063―2076

doi: 10.1016/S0016-7037(02)01299-1
Dutrizac J E, Kaiman S(1976). Synthesis and properties of jarosite-type compounds. The Canadian Mineralogist, 14: 151―158
Gaboreau S, Vieillard P(2004). Prediction of Gibbs free energies of formation of mineralsof the alunite supergroup. Geochimica etCosmochimica Acta, 68 (16): 3307―3316

doi: 10.1016/j.gca.2003.10.040
Grishin S I, Bigham J MTouvinen O H(1988). Characterizationof Jarosite Formed upon Bacterial Oxidation of Ferrous Sulfate ina Packed-Bed Reactort. Applied and EnvironmentalMicrobiology, 54 (12): 3101―3106
Liao Y H, Zhou L X(2007). Schwertmannite formed under extreme acid conditions and its environmentalsignificance. Acta Petrologica et Mineralogica, 26 (2): 177―183 (in Chinese with English abstract)
Liu J, Tao X, Cai P(2009). Study of formationof jarosite mediated by thiobacillus ferrooxidans in 9K medium. Procedia Earth and Planetary Science, 1: 706―712

doi: 10.1016/j.proeps.2009.09.111
Majzlan J, Navrotsky A, Schwertmann U(2004). Thermodynamicsof iron oxides: Part III. Enthalpies of formation and stability offerrihydrite(Fe(OH)3), schwertmannite (FeO(OH)3/4(SO4)1/8), and ϵ-Fe2O3. Geochimica et Cosmochimica Acta, 68 (5): 1049―1059

doi: 10.1016/S0016-7037(03)00371-5
Matsumoso N, Nakasono S, Ohmura N, Saiki H(1999). Extension of Logarithmic Growth ofThiobacillus ferrooxidans by Potential Controlled ElectrochemicalReduction of Fe(III). Biotechnology andBioengineering, 64 (6): 716―721

doi: 10.1002/(SICI)1097-0290(19990920)64:6<716::AID-BIT11>3.0.CO;2-9
Mazzetti L, Thistlethwaite P J(2002). Raman spectra and thermal transformations of ferrihydriteand schwertmannite. Journal of Raman Spectroscopy, 33: 104―111

doi: 10.1002/jrs.830
Nakasono S, Matsumono N, Saiki H(1997). Electrochemicalcultivation of thiobacillus ferrooxidans by potential control. Bioelectrochemistry and Bioenergetics, 43: 61―66

doi: 10.1016/S0302-4598(97)00001-9
Piwoni M D(1992). Phenanthroline method.In: Greenberg AE, Clesceri LS, Eaton AD, eds. Standard methods for the examination of waterand wastewater. Washington D C: American Public Health Association, p 3 (66)―63 (68)
Rawlings D E(2005). Characteristics and adaptabilityof iron- and sulfur-oxidizing microorganisms used for the recoveryof metals from minerals and their concentrates. Microbial Cell Factories, 4: 13

doi: 10.1186/1475-2859-4-13
Regenspurg S, Brand A, Peiffer S(2003). Formation and stabilityof schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta, 68 (6): 1185―1197

doi: 10.1016/j.gca.2003.07.015
Sasaki K, Tanaike O, Konno H(1998). Distinctionof jarosite-group compounds by Raman spectroscopy. The Canadian Mineralogist, 36: 1225―1235
Schwertmann U, Bigham J M, Murad E(1995). The firstoccurrence of schwertmannite in a natural stream environment. European Journal of Mineralogy, 7: 547―552
Touvinen O H, Kelly D P(1973). Studies on the growth of Thiobacillus ferrooxidans: I. Use of membrane filters and ferrous iron agar to determine viablenumber and comparison with CO2 fixation andiron oxidation measures of growth. Archiveson Microbiology, 68: 285
Wang H M, Bigham J M, Jones F S, Tuovinen O H(2007). Synthesis and properties of ammoniojarositesprepared with iron-oxidizing acidophilic microorganisms at 22°C―65°C. Geochimica et Cosmochimica Acta, 71: 155―164

doi: 10.1016/j.gca.2006.09.001
Wang H M, Bigham J M, Tuovinen O H(2006). Formationof schwertmannite and its transformation to jarosite in the presenceof acidophilic iron-oxidizing microorganisms. Materials Science and Engineering C, 26: 588―592

doi: 10.1016/j.msec.2005.04.009
Welch S A, Kirste D, Christy A G, Beavis F R, Beavis S G(2008). Jarosite dissolution II—Reaction kinetics, stoichiometryand acid flux. Chemical Geology, 254: 73―86

doi: 10.1016/j.chemgeo.2008.06.010
[1] Xiaofen YANG, Hongmei WANG, Linfeng GONG, Hima HASSANE, Zhengbo JIANG. Fe(II) oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures in the presence of arsenate[J]. Front Earth Sci Chin, 2009, 3(2): 221-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed