|
|
|
Features of ferric sulfate precipitates formed
by different cultivations of Acidithiobacillus
ferrooxidans |
| Xin WANG,Yan LI,Anhuai LU,Changqiu WANG, |
| The Key Laboratory of
Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences,
Peking University, Beijing 100871, China; |
|
|
|
|
Abstract This study focused on the ferric sulfate precipitates formed during the culture of Acidithiobacillus ferrooxidans (A. ferrooxidans) in a modified 9K medium by applying a potential control on the electrode. X-ray diffraction (XRD), environmental scanning electron microscope (ESEM), Raman spectroscopy (Raman) and Fourier Transform Infrared spectroscopy (FTIR) were carried out to characterize and identify the precipitates which were formed, respectively, in the electrochemical cultivation with a fixed cathode potential (bias-experiment) and in the conventional batch cultivation without cathode potential control (no-bias-experiment). The results indicated that K-jarosite presented in both experiments while NH4-jarosite and schwertmannite were only found in the no-bias-experiment. The formation of different precipitates could be attributed to the different growth statuses and rates of A. ferrooxidans and the different concentrations of Fe3+. In the bias-experiment, external electrons reproduced Fe2+ and promoted the growth of A. ferrooxidans, thus resulting in the low Fe3+ concentration and the rapid depletion of NH4+ as the nitrogen source, in which K-jarosite was preferentially formed. In the no-bias- experiment, the lower concentration of A. ferrooxidans was observed, which was due to the continuous consumption of Fe2+ by bacteria, thus resulting in the relatively higher Fe3+ and the NH4+ concentration in culture. The high concentration of Fe3+ favored the precipitation of the solid solution of K-NH4-H3O jarosite, and led to the formation of schwertmannite after K+ and NH4+ were depleted.
|
| Keywords
Acidithiobacillus ferrooxidans
electrochemical cultivation
schwertmannite
jarosite
|
|
Issue Date: 05 June 2010
|
|
|
Basciano L C, Peterson R C(2007). The crystal structure of ammoniojarosite, (NH4)Fe3(SO4)2(OH)6 and the crystalchemistry of the ammoniojarosite-hydronium jarosite solid-solutionseries. Mineralogical Magazine, 71 (4): 427―441
doi: 10.1180/minmag.2007.071.4.427
|
|
Bigham J M(1994). Schwertmannite, a new iron oxyhydroxysulphatefrom Pyhäsalmi, Finland, and other localities. Mineralogical Magazine, 58: 641―648
doi: 10.1180/minmag.1994.058.393.14
|
|
Bigham J M, Schwertmann U, Traina S J, Winland R L, Wolf M(1996). Schwertmannite and the chemical modeling of iron in acid sulfatewaters. Geochimica et Cosmochimica Acta, 60 (12): 2111―2121
doi: 10.1016/0016-7037(96)00091-9
|
|
Blake R C, Howard G T, McGinness S(1994). Enhancedyields of iron-oxidizing bacteria by in situ electrochemical reductionof soluble iron in the growth medium. AppliedEnvironmental Microbiology, 60: 2704―2710
|
|
Burton E D, Bush R T, Johnston S G, Watling K M, Hocking R K, Sullivan L A, Parker G K(2009). Sorption of Arsenic (V) and Arsenic(III) to Schwertmannite. EnvironmentalScience & Technology, 43 (24): 9202―9207
doi: 10.1021/es902461x
|
|
Colmer A R, Hinkle M E(1947). The Role of Microorganisms in Acid Mine Drainage: APreliminary Report. Science, 106 (2751): 253―256
doi: 10.1126/science.106.2751.253
|
|
Colmer A R, Temple K L, Hinkle M E(1949). An iron-oxidizingbacterium from the acid drainage of some bituminous coal mines. The American Society for Microbiology, 59: 317―328
|
|
Drouet C, Navrotsky A(2003). Synthesis, characterization and thermochemistry of K-Na-H3O jarosites. Geochimica etCosmochimica Acta, 67 (11): 2063―2076
doi: 10.1016/S0016-7037(02)01299-1
|
|
Dutrizac J E, Kaiman S(1976). Synthesis and properties of jarosite-type compounds. The Canadian Mineralogist, 14: 151―158
|
|
Gaboreau S, Vieillard P(2004). Prediction of Gibbs free energies of formation of mineralsof the alunite supergroup. Geochimica etCosmochimica Acta, 68 (16): 3307―3316
doi: 10.1016/j.gca.2003.10.040
|
|
Grishin S I, Bigham J MTouvinen O H(1988). Characterizationof Jarosite Formed upon Bacterial Oxidation of Ferrous Sulfate ina Packed-Bed Reactort. Applied and EnvironmentalMicrobiology, 54 (12): 3101―3106
|
|
Liao Y H, Zhou L X(2007). Schwertmannite formed under extreme acid conditions and its environmentalsignificance. Acta Petrologica et Mineralogica, 26 (2): 177―183 (in Chinese with English abstract)
|
|
Liu J, Tao X, Cai P(2009). Study of formationof jarosite mediated by thiobacillus ferrooxidans in 9K medium. Procedia Earth and Planetary Science, 1: 706―712
doi: 10.1016/j.proeps.2009.09.111
|
|
Majzlan J, Navrotsky A, Schwertmann U(2004). Thermodynamicsof iron oxides: Part III. Enthalpies of formation and stability offerrihydrite(Fe(OH)3), schwertmannite (FeO(OH)3/4(SO4)1/8), and ϵ-Fe2O3. Geochimica et Cosmochimica Acta, 68 (5): 1049―1059
doi: 10.1016/S0016-7037(03)00371-5
|
|
Matsumoso N, Nakasono S, Ohmura N, Saiki H(1999). Extension of Logarithmic Growth ofThiobacillus ferrooxidans by Potential Controlled ElectrochemicalReduction of Fe(III). Biotechnology andBioengineering, 64 (6): 716―721
doi: 10.1002/(SICI)1097-0290(19990920)64:6<716::AID-BIT11>3.0.CO;2-9
|
|
Mazzetti L, Thistlethwaite P J(2002). Raman spectra and thermal transformations of ferrihydriteand schwertmannite. Journal of Raman Spectroscopy, 33: 104―111
doi: 10.1002/jrs.830
|
|
Nakasono S, Matsumono N, Saiki H(1997). Electrochemicalcultivation of thiobacillus ferrooxidans by potential control. Bioelectrochemistry and Bioenergetics, 43: 61―66
doi: 10.1016/S0302-4598(97)00001-9
|
|
Piwoni M D(1992). Phenanthroline method.In: Greenberg AE, Clesceri LS, Eaton AD, eds. Standard methods for the examination of waterand wastewater. Washington D C: American Public Health Association, p 3 (66)―63 (68)
|
|
Rawlings D E(2005). Characteristics and adaptabilityof iron- and sulfur-oxidizing microorganisms used for the recoveryof metals from minerals and their concentrates. Microbial Cell Factories, 4: 13
doi: 10.1186/1475-2859-4-13
|
|
Regenspurg S, Brand A, Peiffer S(2003). Formation and stabilityof schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta, 68 (6): 1185―1197
doi: 10.1016/j.gca.2003.07.015
|
|
Sasaki K, Tanaike O, Konno H(1998). Distinctionof jarosite-group compounds by Raman spectroscopy. The Canadian Mineralogist, 36: 1225―1235
|
|
Schwertmann U, Bigham J M, Murad E(1995). The firstoccurrence of schwertmannite in a natural stream environment. European Journal of Mineralogy, 7: 547―552
|
|
Touvinen O H, Kelly D P(1973). Studies on the growth of Thiobacillus ferrooxidans: I. Use of membrane filters and ferrous iron agar to determine viablenumber and comparison with CO2 fixation andiron oxidation measures of growth. Archiveson Microbiology, 68: 285
|
|
Wang H M, Bigham J M, Jones F S, Tuovinen O H(2007). Synthesis and properties of ammoniojarositesprepared with iron-oxidizing acidophilic microorganisms at 22°C―65°C. Geochimica et Cosmochimica Acta, 71: 155―164
doi: 10.1016/j.gca.2006.09.001
|
|
Wang H M, Bigham J M, Tuovinen O H(2006). Formationof schwertmannite and its transformation to jarosite in the presenceof acidophilic iron-oxidizing microorganisms. Materials Science and Engineering C, 26: 588―592
doi: 10.1016/j.msec.2005.04.009
|
|
Welch S A, Kirste D, Christy A G, Beavis F R, Beavis S G(2008). Jarosite dissolution II—Reaction kinetics, stoichiometryand acid flux. Chemical Geology, 254: 73―86
doi: 10.1016/j.chemgeo.2008.06.010
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|