|
|
|
Microbial respiratory quinones as indicator of
ecophysiological redox conditions |
| Yiliang LI, |
| Department of Earth
Sciences & School of Biological Sciences, the University of Hong
Kong, Hong Kong, China; |
|
|
|
|
Abstract The bacterial respiratory quinones and membrane phospholipid fatty acids (PLFA) were measured to test the biochemical responses to the redox conditions after the respiration of diverse electron acceptors by microorganisms. Shewanella putrefaciens strain CN32 was examined for its growth with O2, nitrate, ferrihydrite, ferric citrate, and sulfite as electron acceptors. The same parameters were also measured for Desulfovibrio desulfuricans strain G-20, Geobacter metallireducens strain GS-15, Thioploca spp., two strains of magnetotactic bacteria (Magneteospirilum magnetotactium marine vibrioid strain MV-1 and M. sp. strain AMB-1), and environmental sediments. Microorganisms with aerobic respiratory of oxygen (MV-1 and AMB-1) have high ratios of monounsaturated to saturated straight chain PLFA and ubiquinone to menaquinone ratios; while those that conduct strict anaerobic respirations (G-20 with sulfate and GS-15 with ferric iron) have low ratios of monounsaturated to saturated straight chain PLFA and uniquinone to menaquinone ratios. The facultative respiratory of nitrate (Thioploca) has these parameters in the middle. The ratios of menaquinones to ubiquinones in CN32 cells systematically increase according to the increase of redox potential and bioavalibility of electron acceptors. The correlation between SUQ-n/SMK-n ratios and redox conditions indicates the structure of respiratory quinone responses sensitively to the microbial ecophysiological conditions.
|
| Keywords
electron acceptor
redox potential
bacterial metabolism
phospholipid fatty acid (PLFA)
respiratory quinone
ecophysiology
|
|
Issue Date: 05 June 2010
|
|
|
Baird H H, Nivens D E, Parker J H, White D C (1985). The biomass, community structure, and spatial distribution of the sedimentary microbiota from a high-energyarea of the deep sea. Deep-Sea Res, 32(9): 1089–1099
doi: 10.1016/0198-0149(85)90064-0
|
|
Bazylinski D A, Frankel R B (2004). Magnetosome formation in prokaryotes. Nat Rev Microbiol, 2 (3): 217–230
doi: 10.1038/nrmicro842
|
|
Bazylinski D A, Frankel R B, Jannasch H W (1988). Anaerobic magnetite production by a marine magnetotactic bacterium. Nature, 334 (6182): 518–519
doi: 10.1038/334518a0
|
|
Beliaev A S, Klingeman D M, Klappenbach J A, Wu L, Romine M F, Tiedje J M, Nealson K H, Fredrickson J K, Zhou J (2005). Globaltranscriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol, 187 (20): 7138–7145
doi: 10.1128/JB.187.20.7138-7145.2005
|
|
Bligh E G, Dyer W J (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 97: 911–917
|
|
Collins M D, Jones D (1981). Distribution of isoprenoid quinone structural types in bacteria andtheir taxonomic implication. Microbiol Rev, 45 (2): 316–354
|
|
Fossing H, Gallardo V A, Jørgensen B B, Hüttel M, Nielsen L P, Schulz H, Canfield D E, Forster S, Glud R N, Gundersen J K, Küver J, Ramsing N B, Teske A, Thamdrup B, Ulloa O (1995). Concentration and transport of nitrate by the mat-forming sulfurbacterium Thioploca. Nature, 374 (6524): 713–715
doi: 10.1038/374713a0
|
|
Frolova G M, Pavel’ K G, Shparteeva A A, Nedashkovskaia O I, Gorshkova N M, Ivanova E P, Mikhaĭlov V V (2005). Lipid composition of novel Shewanella species isolated from far Eastern seas. Mikrobiologiia, 74 (6): 766–771
|
|
Gennis R B, Stewart V (1996) Respiration in Escherichia coli and Salmonella typhimurium: cellularand molecular biology. 2nd edition. Neidhardt F C, eds. Washington D C: American Society for Microbiology, 217–261
|
|
Geyer R, Peacock A D, White D C, Lytle C, Van Berkel G J (2004). Atmospheric pressure chemical ionization and atmosphericpressure photoionization for simultaneous mass spectrometric analysisof microbial respiratory ubiquinones and menaquinones. J Mass Spectrom, 39 (8): 922–929
doi: 10.1002/jms.670
|
|
Guckert J B, Antworth C P, Nichols P D, White D C (1985). Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic communitystructure of estuarine sediments. FEMS Microbiol Letters, 31: 147–158
|
|
Hedrick D B, White D C (1986). Microbial respiratory quinones in the environment: a sensitive liquidchromatographic method. J Microbiol Methods, 5 (5–6): 243–254
doi: 10.1016/0167-7012(86)90049-7
|
|
Hiraishi A (1999). Isoprenoid quinones as biomarkersof microbial populations in the environment. J Biosci Bioeng, 88(5): 449–460
doi: 10.1016/S1389-1723(00)87658-6
|
|
Hiraishi A, Ueda Y, Ishihara J (1998). Quinone profiling of bacterial communities in natural and synthetic sewage activatedsludge for enhanced phosphate removal. Appl Environ Microbiol, 64(3): 992–998
|
|
Holländer R (1976). Correlation of thefunction of demethylmenaquinone in bacterial electron transport withits redox potential. FEBS Lett, 72 (1): 98–100
doi: 10.1016/0014-5793(76)80821-6
|
|
Hunter K S, Wang Y, van Cappellen P (1998). Kinetic modeling of microbially-driven redox chemistry of subsurface environments:coupling transport, microbial metabolism and geochemistry. J Hydrol (Amst), 209 (1–4): 53–80
doi: 10.1016/S0022-1694(98)00157-7
|
|
Jørgensen B B, Gallardo V A (1999). Thioploca spp: filamenteoussulfur bacteria with nitrate vacuoles. FEMS Microbiol Ecol, 28 (4): 301–313
doi: 10.1111/j.1574-6941.1999.tb00585.x
|
|
Li Y L, Peacock A, White D C, Geyer R, Zhang C L (2007). Spatial patterns of bacterial signature biomarkers in marine sedimentsof the Gulf of Mexico. Chem Geol, 238 (3–4): 168–179
doi: 10.1016/j.chemgeo.2006.11.007
|
|
Li Y L, Vali H, Yang J, Phelps T J, Zhang C L (2006). Reduction of iron oxides enhanced by a sulfate-reducing bacterium and biogenicH2S production. Geomicrobiol J, 23 (2): 103–117
doi: 10.1080/01490450500533965
|
|
Lovley D R, Coates J D, Blunt-Harris E L, Phillips E J P, Woodward J C (1996). Humic substances as electron acceptors for microbialrespiration. Nature, 382(6590): 445–448
doi: 10.1038/382445a0
|
|
Lovley D R, Giovannoni S J, White D C, Champine J E, Phillips E J P, Gorby Y A, Goodwin S (1993). Geobacter metallireducens gen. nov. sp. nov., a microorganism capableof coupling the complete oxidation of organic compounds to the reductionof iron and other metals. Arch Microbiol, 159(4): 336–344
doi: 10.1007/BF00290916
|
|
Ludvigsen L, Albrechtsen H-J, Ringelberg D B, Ekelund F, Christensen T H (1999). Distribution and composition of microbial populationsin a landfill leachate contaminated aquifer. Microbial Ecology, 37 (3): 197–207
doi: 10.1007/s002489900143
|
|
Matsunaga T, Sakaguchi T, Tadokoro F (1991). Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol, 35 (5): 651–655
doi: 10.1007/BF00169632
|
|
McCaffrey M A, Farrington J W, Repeta D J (1989). Goechemical implications of the lipid composition of Thioploca spp. From the Peru upwelling region15°S. Org Geochem, 14 (1): 61–68
doi: 10.1016/0146-6380(89)90019-3
|
|
McHatton S C, Barry J P, Jannasch H W, Nelson D C (1996). High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl Environ Microbiol, 62 (3): 954–958
|
|
Moser D P, Nealson K H (1996). Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol, 62 (6): 2100–2105
|
|
Myers C R, Myers J M (2004). Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl Environ Microbiol, 70 (9): 5415–5425
doi: 10.1128/AEM.70.9.5415-5425.2004
|
|
Myers C R, Nealson K H (1988). Bacterial manganese reduction and growth with manganeseoxide as the sole electron acceptor. Science, 240 (4857): 1319–1321
doi: 10.1126/science.240.4857.1319
|
|
Nealson K H, Little B (1997). Breathing manganese and iron: solid-state respiration. Adv Appl Microbiol, 45: 213–239
doi: 10.1016/S0065-2164(08)70264-8
|
|
Nealson K H, Moser D P, Saffarini D A (1995). Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl Environ Microbiol, 61 (4): 1551–1554
|
|
Nealson K H, Myers C R (1992). Microbial reduction of manganese and iron: new approaches to carboncycling. Appl Environ Microbiol, 58 (2): 439–443
|
|
Nealson K H, Saffarini D (1994). Iron and manganese in anaerobic respiration: environmentalsignificance, physiology, and regulation. Annu Rev Microbiol, 48 (1): 311–343
doi: 10.1146/annurev.mi.48.100194.001523
|
|
Nealson K H, Scott J (2006). Ecophysiology of the Genus Shewanella. The Prokaryotes, 6: 1133–1151
doi: 10.1007/0-387-30746-X_45
|
|
Otte S, Kuenen J G, Nielsen L P, Paerl H W, Zopfi J, Schulz H N, Teske A, Strotmann B, Gallardo VA, Jørgensen BB (1999). Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol, 65 (7): 3148–3157
|
|
Parkes R J, Taylor J (1983). The relationship between fatty acid distributions andbacterial respiratory types in contemporary marine sediments. Estuar Coast Shelf Sci, 16 (2): 173–174
doi: 10.1016/0272-7714(83)90139-7
|
|
Parkes R J (1987). Analysis of microbial communitieswithin sediments using biomarkers. 141–177. In: Fletcher M, Gray T R Gand Jones J, eds. Ecology of Microbial Communities. Cambridge University Press: Cambridge
|
|
Perry KA, Kostka J E, Luther G W, Nealson K H (1993). Mediation of sulfur speciation by a Black Sea facultative anaerobe. Science, 259 (5096): 801–803
doi: 10.1126/science.259.5096.801
|
|
Polglase W J, Pun W T, Withaar J (1966). Lipoquinones of Escherichia coli. Biochim Biophys Acta, 118 (2): 425–426
|
|
Ringelberg D B, Sutton S, White D C (1997). Biomass, bioactivity and biodiversity: microbial ecology of the deep subsurface:analysis of ester-linked phospholipid fatty acids. FEMS Microbiol Rev, 20 (3–4): 371–377
doi: 10.1111/j.1574-6976.1997.tb00322.x
|
|
Ruebush S S, Icopini G A, Brantley S L, Tien M (2006). In vitro enzymatic reduction kineticsof mineral oxides by membrane fractions from Shewanella oneidensis MR-1. Geochim et Cosmochim Acta, 70 (1): 56–70
doi: 10.1016/j.gca.2005.08.020
|
|
Schröder I, Johnson E, de Vries S (2003). Microbial ferric iron reductases. FEMS Microbiol Rev, 27 (2–3): 427–447
doi: 10.1016/S0168-6445(03)00043-3
|
|
Schulz H N, Jørgensen B B (2001). Big bacteria. Annu Rev Microbiol, 55 (1): 105–137
doi: 10.1146/annurev.micro.55.1.105
|
|
Søballe B, Poole R K (1999). Microbial ubiquinones: multiple roles in respiration,gene regulation and oxidative stress management. Microbiology, 145 (8): 1817–1830
doi: 10.1099/13500872-145-8-1817
|
|
Straub K L, Benz M, Schink B (2001). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol, 34 (3): 181–186
doi: 10.1111/j.1574-6941.2001.tb00768.x
|
|
Whistance G R, Threlfall D R (1968). Effect of anaerobiosis on the concentrations of demethylmenaquinone,menaquinone and ubiquinone in Escherichia freundii, Proteus mirabilisand Aeromonas punctata. Biochem J, 108 (3): 505–507
|
|
Wissenbach U, Ternes D, Unden G (1992). An Escherichia coli mutant containing only demethylmenaquinone,but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamineN-oxide and nitrate respiration. Arch Microbiol, 158 (1): 68–73
doi: 10.1007/BF00249068
|
|
White D C, Davis W M, Nickels J S, King J D, Bobbie R J (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40 (1): 51–62
doi: 10.1007/BF00388810
|
|
White D C, Ringelberg D B, MacNaughton S J, Alugupalli S A, Schram D (1997) Signature lipid biomarker analysis for quantitative assessmentin situ of environmental microbial ecology. In: Molecular markers in environmental geochemistry. Eganhouse R P, ed. ACS Symposium Series671, American Chemical Society, Washington D C, 22–34
|
|
Zhang C L, Huang Z Y, Cantu J, Pancost R D, Brigmon R L, Lyons T W, Sassen R (2005). Lipid biomarkers and carbon isotope signatures of amicrobial (Beggiatoa) mat associatedwith gas hydrates in the gulf of Mexico. Appl Environ Microbiol, 71 (4): 2106–2112
doi: 10.1128/AEM.71.4.2106-2112.2005
|
|
Zopfi J, Kjaer T, Nielsen L P, Jørgensen B B (2001). Ecology of Thioploca spp.: nitrate and sulfur storage in relation to chemical microgradientsand influence of Thioploca spp. on the sedimentary nitrogen cycle. Appl Environ Microbiol, 67 (12): 5530–5537
doi: 10.1128/AEM.67.12.5530-5537.2001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|