|
|
|
Landslide hazard zonation assessment using GIS analysis at Golmakan Watershed, northeast of Iran |
Mohammad Reza MANSOURI DANESHVAR1, Ali BAGHERZADEH2( ) |
| 1. Islamic Azad University-Mashhad Branch, Department of Geography, Emamyeh Boulevard, Mashhad, Iran; 2. Islamic Azad University-Mashhad Branch, Department of Agriculture, Emamyeh Boulevard, Mashhad, Iran |
|
|
|
|
Abstract Landslide hazard is one of the major environmental hazards in geomorphic studies in mountainous areas. For helping the planners in selection of suitable locations to implement development projects, a landslide hazard zonation map has been produced for the Golmakan Watershed as part of Binaloud northern hillsides (northeast of Iran). For this purpose, after preparation of a landslide inventory of the study area, some 15 major parameters were examined for integrated analysis of landslide hazard in the region. The analyses of parameters were done by geo-referencing and lateral model making, satellite imaging of the study area, and spatial analyses by using geographical information system (GIS). The produced factor maps were weighted with analytic hierarchy process (AHP) method and then classified. The study area was classified into four classes of relative landslide hazards: negligible, low, moderate, and high. The final produced map for landslide hazard zonation in Golmakan Watershed revealed that: 1) the parameters of land slope and geologic formation have strong correlation (R2 = 0.79 and 0.83, respectively) with the dependent variable landslide hazard (p<0.05). 2) About 18.8% of the study area has low and negligible hazards to future landslides, while 81.2% of the land area of Golmakan Watershed falls into the high and moderate categories.
|
| Keywords
landslide hazard zonation map
geographical information system (GIS)
analytic hierarchy process (AHP)
Golmakan Watershed
|
|
Corresponding Author(s):
BAGHERZADEH Ali,Email:abagher_ch@yahoo.com
|
|
Issue Date: 05 March 2011
|
|
| 1 |
Akgün A, Bulut F (2007). GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology , 51(8): 1377-1387 doi: 10.1007/s00254-006-0435-6
|
| 2 |
Ayalew L, Yamagishi H (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, central Japan. Geomorphology , 65(1-2): 15-31 doi: 10.1016/j.geomorph.2004.06.010
|
| 3 |
Ayalew L, Yamagishi H, Marui H, Kano T (2005). Landslides in Sado Island of Japan: Part II. GIS-based hazard mapping with comparisons of results from two methods and verifications. Geomorphology , 81: 432-445
|
| 4 |
Ayalew L, Yamagishi H, Ugawa N (2004). Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides , 1(1): 73-81 doi: 10.1007/s10346-003-0006-9
|
| 5 |
Barredo J, Benavides A, Hervás J, van Westen C J (2000). Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int J Appl Earth Obs Geoinf , 2(1): 9-23 doi: 10.1016/S0303-2434(00)85022-9
|
| 6 |
Brabb E E (1984). Innovative approaches to landslide hazard mapping. In: Proceedings of 5th International Symposium on Landslides, Rotterdam. 1059-1074
|
| 7 |
Carrara A, Crosta G, Frattini P (2008). Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology , 94(3-4): 353-378 doi: 10.1016/j.geomorph.2006.10.033
|
| 8 |
Cevik E, Topal T (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology , 44(8): 949-962 doi: 10.1007/s00254-003-0838-6
|
| 9 |
Chi K, Lee K, Park N (2002). Landslide stability analysis and prediction modeling with landslide occurrences on KOMPSAT EOC imagery. Korean J Remote Sensing , 18(1): 1-12
|
| 10 |
Clerici A, Perego S, Tellini C, Vescovi P (2002). A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology , 48(4): 349-364 doi: 10.1016/S0169-555X(02)00079-X
|
| 11 |
Dai F C, Lee C F, Li J, Xu Z W (2001). Assessment of landslide hazard on the natural terrain of Lantau Island, Hong Kong. Environmental Geology , 43(3): 381-391
|
| 12 |
Dai F C, Lee C F, Ngai Y Y (2002). Landslide risk assessment and management: An overview. Eng Geol , 64(1): 65-87 doi: 10.1016/S0013-7952(01)00093-X
|
| 13 |
Eastman J R, Jin W, Kyem P A K, Toledano J (1995). Raster procedures for multi-criteria/multiobjective decisions. Photogramm Eng Remote Sensing , 61(5): 539-547
|
| 14 |
Ercanoglu M, Gokceoglu C, Van Asch T H W J (2004). Landslide hazard zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards , 32(1): 1-23 doi: 10.1023/B:NHAZ.0000026786.85589.4a
|
| 15 |
Fall M, Azzam R, Noubactep C (2006). A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Eng Geol , 82(4): 241-263 doi: 10.1016/j.enggeo.2005.11.007
|
| 16 |
Griffiths J S, Mather A E, Hart A B (2002). Landslide susceptibility in the Rio Aguas catchment, SE Spain. Q J Eng Geol Hydrogeol , 35(1): 9-17 doi: 10.1144/qjegh.35.1.9
|
| 17 |
Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, central Italy. Geomorphology , 31(1-4): 181-216 doi: 10.1016/S0169-555X(99)00078-1
|
| 18 |
Jiang H, Eastman J R (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. Int J Geogr Inf Sci , 14(2): 173-184 doi: 10.1080/136588100240903
|
| 19 |
Lee S (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens , 26(7): 1477-1491 doi: 10.1080/01431160412331331012
|
| 20 |
Lee S, Choi J, Min K (2004). Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens , 25(11): 2037-2052 doi: 10.1080/01431160310001618734
|
| 21 |
Malczewski J (1999). GIS and Multicriteria Decision Analysis.New York: John Wiley & Sons, 408
|
| 22 |
Parise M (2001). Landslide mapping techniques and their use in the assessment of the landslide hazard. Phys Chem Earth (C) , 26(9): 697-703
|
| 23 |
Roth R A (1983). Factors affecting landslide susceptibility in San Mateo County, California. Bull Assoc Eng Geol , 4: 353-372
|
| 24 |
Saaty T L (1980). The Analytical Hierarchy Process.New York: McGraw Hill, 350
|
| 25 |
Saaty T, Vargas L G (2001). Models, Methods, Concepts, and Applications of the Analytic Hierarchy Process.Boston: Kluwer Academic, 333
|
| 26 |
Saaty T L (1990). The Analytic Hierarchy Process.2nd ed. Pittsburg: RWS Publications, 286
|
| 27 |
Saaty T L (1994). How to make a decision: The analytic hierarchy process. Interfaces , 24(6): 19-43 doi: 10.1287/inte.24.6.19
|
| 28 |
Saha A K, Gupta R P, Arora M K (2002). GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens , 23(2): 357-369 doi: 10.1080/01431160010014260
|
| 29 |
Temesgen B, Mohammed M U, Korme T (2001). Natural hazard assessment using GIS and remote sensing methods, with particular references to the landslides in the Wondogenet area, Ethiopia. Phys Chem Earth (C) , 26: 665-675
|
| 30 |
Tsaparas I, Rahardjo H, Toll D G, Leong E C (2002). Controlling parameters for rainfall-induced landslides. Comput Geotech , 29(1): 1-27 doi: 10.1016/S0266-352X(01)00019-2
|
| 31 |
Yagi H (2003). Development of assessment method for landslide hazardness by AHP. In: Abstract Volume of the 42nd Annual Meeting of the Japan Landslide Society, 209-212
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|