Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    0, Vol. Issue () : 70-81    https://doi.org/10.1007/s11707-011-0151-8
RESEARCH ARTICLE
Landslide hazard zonation assessment using GIS analysis at Golmakan Watershed, northeast of Iran
Mohammad Reza MANSOURI DANESHVAR1, Ali BAGHERZADEH2()
1. Islamic Azad University-Mashhad Branch, Department of Geography, Emamyeh Boulevard, Mashhad, Iran; 2. Islamic Azad University-Mashhad Branch, Department of Agriculture, Emamyeh Boulevard, Mashhad, Iran
 Download: PDF(1293 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Landslide hazard is one of the major environmental hazards in geomorphic studies in mountainous areas. For helping the planners in selection of suitable locations to implement development projects, a landslide hazard zonation map has been produced for the Golmakan Watershed as part of Binaloud northern hillsides (northeast of Iran). For this purpose, after preparation of a landslide inventory of the study area, some 15 major parameters were examined for integrated analysis of landslide hazard in the region. The analyses of parameters were done by geo-referencing and lateral model making, satellite imaging of the study area, and spatial analyses by using geographical information system (GIS). The produced factor maps were weighted with analytic hierarchy process (AHP) method and then classified. The study area was classified into four classes of relative landslide hazards: negligible, low, moderate, and high. The final produced map for landslide hazard zonation in Golmakan Watershed revealed that: 1) the parameters of land slope and geologic formation have strong correlation (R2 = 0.79 and 0.83, respectively) with the dependent variable landslide hazard (p<0.05). 2) About 18.8% of the study area has low and negligible hazards to future landslides, while 81.2% of the land area of Golmakan Watershed falls into the high and moderate categories.

Keywords landslide hazard zonation map      geographical information system (GIS)      analytic hierarchy process (AHP)      Golmakan Watershed     
Corresponding Author(s): BAGHERZADEH Ali,Email:abagher_ch@yahoo.com   
Issue Date: 05 March 2011
 Cite this article:   
Mohammad Reza MANSOURI DANESHVAR,Ali BAGHERZADEH. Landslide hazard zonation assessment using GIS analysis at Golmakan Watershed, northeast of Iran[J]. Front Earth Sci, 0, (): 70-81.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-011-0151-8
https://academic.hep.com.cn/fesci/EN/Y0/V/I/70
Fig.1  Location and geographical position of the study area
Fig.2  Satellite image of the study area
Fig.3  Elevation map of the study area
Fig.4  Slope map of the study area
ImportanceDefinitionExplanation
1Equal importanceContribution to objective is equal
3Moderate importanceAttribute is slightly favored over another
5Strong importanceAttribute is strongly favored over another
7Very strong importanceAttribute is very strongly favored over another
9Extreme importanceEvidence favoring one attribute is of the highest possible order of affirmation
2, 4, 6, 8Intermediate valuesWhen compromise is needed
Tab.1  Pair-wise comparison nine-point rating scale
ParametersElevationSlopeAspectDrainage coefficientStreamsLithologyFaultsSoil unitsLand use and land coverIsohypseIsothermSpringsPotential of floodPotential of erosionAnthropogenic factorsFactor weights
Elevation1,000.0228
Slope7.001.000.1845
Aspect4.000.201.000.0574
Drainage coefficient0.500.110.251.000.0124
Streams1.000.140.203.001.000.0264
Lithology8.001.005.009.007.001.000.1681
Faults6.001.005.007.005.001.001.000.1496
Soil units3.000.255.004.002.000.250.251.000.0575
Land use and cover5.000.331.006.003.000.500.501.001.000.0931
Isohypse1.000.200.504.000.330.170.200.500.331.000.0321
Isotherm0.250.140.502.000.170.170.140.250.130.501.000.0144
Springs0.500.130.331.001.000.140.170.200.170.502.001.000.0172
Potential of flood3.000.200.506.003.000.330.502.000.331.003.003.001.000.0596
Potential of erosion3.000.200.335.005.000.250.330.500.250.333.003.000.331.000.0361
Anthropogenic5.000.250.507.003.000.330.334.000.503.003.007.000.503.001.000.0688
Tab.2  Pair-wise comparison matrix for calculating factor weights
Fig.5  Aspect map of the study area
Fig.6  Lithology and faults map of the study area
Fig.7  Land use/land cover map of the study area
Fig.8  Soil units map of the study area
Fig.9  Isohypse map of the study area
Fig.10  Isotherm map of the study area
Fig.11  Potential of erosion and drainage coefficient map of the study area
Fig.12  Potential of flood map of the study area
Fig.13  Streams and springs map of the study area
Fig.14  Anthropogenic map of the study area
Fig.15  Landslide hazard zonation map of the study area
Fig.16  Landslide occurrences map based on aerial photos
Area/%Area/haHazard classCumulative landslide occurrence/%Factors overlay grading
2.43122.4Negligible331.19-3.74
16.38823.9Low503.74-5.02
60.693052.3Moderate665.02-6.29
20.501030.5High1006.29-8.84
Tab.3  Grading, cumulative occurrences, hazard class, and the surface area of landslide hazards at the study area
ParametersTestLandslide
Geologic formationsPearson correlationR2 = 0.83
Significant (two-tailed)0.000
Land slopePearson correlationR2 = 0.79
Significant (two-tailed)0.000
Tab.4  Correlation between landslide hazards with slope and geologic formations
1 Akgün A, Bulut F (2007). GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology , 51(8): 1377-1387
doi: 10.1007/s00254-006-0435-6
2 Ayalew L, Yamagishi H (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, central Japan. Geomorphology , 65(1-2): 15-31
doi: 10.1016/j.geomorph.2004.06.010
3 Ayalew L, Yamagishi H, Marui H, Kano T (2005). Landslides in Sado Island of Japan: Part II. GIS-based hazard mapping with comparisons of results from two methods and verifications. Geomorphology , 81: 432-445
4 Ayalew L, Yamagishi H, Ugawa N (2004). Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides , 1(1): 73-81
doi: 10.1007/s10346-003-0006-9
5 Barredo J, Benavides A, Hervás J, van Westen C J (2000). Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. Int J Appl Earth Obs Geoinf , 2(1): 9-23
doi: 10.1016/S0303-2434(00)85022-9
6 Brabb E E (1984). Innovative approaches to landslide hazard mapping. In: Proceedings of 5th International Symposium on Landslides, Rotterdam. 1059-1074
7 Carrara A, Crosta G, Frattini P (2008). Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology , 94(3-4): 353-378
doi: 10.1016/j.geomorph.2006.10.033
8 Cevik E, Topal T (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology , 44(8): 949-962
doi: 10.1007/s00254-003-0838-6
9 Chi K, Lee K, Park N (2002). Landslide stability analysis and prediction modeling with landslide occurrences on KOMPSAT EOC imagery. Korean J Remote Sensing , 18(1): 1-12
10 Clerici A, Perego S, Tellini C, Vescovi P (2002). A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology , 48(4): 349-364
doi: 10.1016/S0169-555X(02)00079-X
11 Dai F C, Lee C F, Li J, Xu Z W (2001). Assessment of landslide hazard on the natural terrain of Lantau Island, Hong Kong. Environmental Geology , 43(3): 381-391
12 Dai F C, Lee C F, Ngai Y Y (2002). Landslide risk assessment and management: An overview. Eng Geol , 64(1): 65-87
doi: 10.1016/S0013-7952(01)00093-X
13 Eastman J R, Jin W, Kyem P A K, Toledano J (1995). Raster procedures for multi-criteria/multiobjective decisions. Photogramm Eng Remote Sensing , 61(5): 539-547
14 Ercanoglu M, Gokceoglu C, Van Asch T H W J (2004). Landslide hazard zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards , 32(1): 1-23
doi: 10.1023/B:NHAZ.0000026786.85589.4a
15 Fall M, Azzam R, Noubactep C (2006). A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Eng Geol , 82(4): 241-263
doi: 10.1016/j.enggeo.2005.11.007
16 Griffiths J S, Mather A E, Hart A B (2002). Landslide susceptibility in the Rio Aguas catchment, SE Spain. Q J Eng Geol Hydrogeol , 35(1): 9-17
doi: 10.1144/qjegh.35.1.9
17 Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, central Italy. Geomorphology , 31(1-4): 181-216
doi: 10.1016/S0169-555X(99)00078-1
18 Jiang H, Eastman J R (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. Int J Geogr Inf Sci , 14(2): 173-184
doi: 10.1080/136588100240903
19 Lee S (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens , 26(7): 1477-1491
doi: 10.1080/01431160412331331012
20 Lee S, Choi J, Min K (2004). Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int J Remote Sens , 25(11): 2037-2052
doi: 10.1080/01431160310001618734
21 Malczewski J (1999). GIS and Multicriteria Decision Analysis.New York: John Wiley &amp; Sons, 408
22 Parise M (2001). Landslide mapping techniques and their use in the assessment of the landslide hazard. Phys Chem Earth (C) , 26(9): 697-703
23 Roth R A (1983). Factors affecting landslide susceptibility in San Mateo County, California. Bull Assoc Eng Geol , 4: 353-372
24 Saaty T L (1980). The Analytical Hierarchy Process.New York: McGraw Hill, 350
25 Saaty T, Vargas L G (2001). Models, Methods, Concepts, and Applications of the Analytic Hierarchy Process.Boston: Kluwer Academic, 333
26 Saaty T L (1990). The Analytic Hierarchy Process.2nd ed. Pittsburg: RWS Publications, 286
27 Saaty T L (1994). How to make a decision: The analytic hierarchy process. Interfaces , 24(6): 19-43
doi: 10.1287/inte.24.6.19
28 Saha A K, Gupta R P, Arora M K (2002). GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens , 23(2): 357-369
doi: 10.1080/01431160010014260
29 Temesgen B, Mohammed M U, Korme T (2001). Natural hazard assessment using GIS and remote sensing methods, with particular references to the landslides in the Wondogenet area, Ethiopia. Phys Chem Earth (C) , 26: 665-675
30 Tsaparas I, Rahardjo H, Toll D G, Leong E C (2002). Controlling parameters for rainfall-induced landslides. Comput Geotech , 29(1): 1-27
doi: 10.1016/S0266-352X(01)00019-2
31 Yagi H (2003). Development of assessment method for landslide hazardness by AHP. In: Abstract Volume of the 42nd Annual Meeting of the Japan Landslide Society, 209-212
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed