Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2011, Vol. 5 Issue (3) : 229-238    https://doi.org/10.1007/s11707-011-0175-0
REVIEW ARTICLE
Remote sensing of soil properties in precision agriculture: A review
Yufeng GE1, J. Alex THOMASSON1, Ruixiu SUI2()
1. Department of Biological and Agriculture Engineering, Texas A&M University, College Station, TX 77843-2117, USA; 2. USDA-ARS, Crop Production Systems Research Unit, Stoneville, MS 38776, USA
 Download: PDF(161 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The success of precision agriculture (PA) depends strongly upon an efficient and accurate method for in-field soil property determination. This information is critical for farmers to calculate the proper amount of inputs for best crop performance and least environmental effect. Grid sampling, as a traditional way to explore in-field soil variation, is no longer considered appropriate since it is labor intensive, time consuming and lacks spatial exhaustiveness. Remote sensing (RS) provides a new tool for PA information gathering and has advantages of low cost, rapidity, and relatively high spatial resolution. Great progress has been made in utilizing RS for in-field soil property determination. In this article, recent publications on the subject of RS of soil properties in PA are reviewed. It was found that a large array of agriculturally-important soil properties (including textures, organic and inorganic carbon content, macro- and micro-nutrients, moisture content, cation exchange capacity, electrical conductivity, pH, and iron) were quantified with RS successfully to the various extents. The applications varied from laboratory-analysis of soil samples with a bench-top spectrometer to field-scale soil mapping with satellite hyper-spectral imagery. The visible and near-infrared regions are most commonly used to infer soil properties, with the ultraviolet, mid-infrared, and thermal-infrared regions have been used occasionally. In terms of data analysis, MLR, PCR, and PLSR are three techniques most widely used. Limitations and possibilities of using RS for agricultural soil property characterization were also identified in this article.

Keywords soil      soil property      precision agriculture (PA)      remote sensing (RS)      near-infrared reflectance spectroscopy      sensor     
Corresponding Author(s): SUI Ruixiu,Email:ruixiu.sui@ars.usda.gov   
Issue Date: 05 September 2011
 Cite this article:   
Yufeng GE,J. Alex THOMASSON,Ruixiu SUI. Remote sensing of soil properties in precision agriculture: A review[J]. Front Earth Sci, 2011, 5(3): 229-238.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-011-0175-0
https://academic.hep.com.cn/fesci/EN/Y2011/V5/I3/229
YearAuthorSoil properties §
PKCaMgZnNaNpHOMECCECClaySiltSandMCOthers
1986Dalal and Henry××Organic C
1991Coleman et al.××××
Morra et al.×Total C
1993Abdel-Hamid××××CaCO3, Fe, salt
Coleman et al.××××Iron oxide
Sudduth and Hummel×××
1995Ben-Dor and Banin×××CaCO3
Coleman and Tadesse××××
1996Hummel et al.××
1998Palicios-Orueta et al.××××Iron content
1999Ehsani et al.×
GopalaPillai and TianSoil type
Malley et al.×××××××S, Mn, Fe
Varvel et al.××
2000Barnes and Baker×××
2001Chang et al.×××××××××××××
Ehsani et al.×
Hummel et al.××
Merry and Janik×××××××
Thomasson et al.×××××××××
Slaughter et al.×
2002Kaleita and Tian××
Lobell and Asner×
2003Cozzolino and Moron××××××Mn, Fe
Hutchinson×
Kaleita et al.×
Lee et al.××××××
Leon et al.××××××××
Stangeland et al.××××××Buffer pH
2004Bogrekci et al.×
2005Bogrekci and Lee (a)×
Bogrekci and Lee (b)××××
Bajwa and Tian×××××××
Stamatiadis et al.×××××××××
2006Ge and Thomasson××××××××
2007Waiser et al.×
Tab.1  Summary of information reported for remote sensing of soil properties in precision agriculture on soil chemical, physical, and other properties
Author & YearSensing technique
Sensing platform ?Sensor type §Waveband ?
SatelliteAerialLaboratoryFieldMultiHyperUVVISNIRMIRTHMW
Dalal and Henry, 1986×××
Agbu et al., 1990××××
Coleman et al., 1991××××××
Morra et al., 1991×××
Coleman et al., 1993××××××
Sudduth and Hummel, 1993a×××
Ben-Dor and Banin, 1994××××
Ben-Dor and Banin, 1995×××
Coleman and Tadesse, 1995×××
Hummel et al., 1996××××
Galvdo et al., 1997×××××
Palacios-Orueta and Ustin, 1998×××××
Ehsani et al., 1999×××
GopalaPillai and Tian, 1999××××
Malley et al., 1999××××
Varvel et al., 1999××××
Barnes and Baker, 2000××××××
Chang et al., 2001×××
Ehsani et al., 2001×××
Hummel et al., 2001×××
Slaughter et al., 2001××××
Thomasson et al., 2001a××××
Thomasson et al., 2001b××××××
Cozzolino and Moron, 2003××××
Hutchinson 2003××
Lee et al., 2003××××
Leon et al., 2003××××
Odhiambo et al., 2003××
Stangeland et al., 2003××××
Bajwa and Tian, 2005××××
Bogrekci and Lee, 2005a×××××
Bogrekci and Lee, 2005b×××××
Stamatiadis et al., 2005××××
Kaleita et al., 2005××××
Sullivan et al., 2005×××
Ge and Thomasson, 2006××××
Waiser et al., 2007××××
Tab.2  Summary of information reported for remote sensing of soil properties in precision agriculture on sensing platforms, sensor types, and wavebands.
Author & YearData analysis technique
Preprocessing ?Qualitative ?Quantitative §
Dalal and Henry, 1986MLR
Frazier and Cheng, 1989BR
Agbu et al., 1990BRMLR
Coleman et al., 1991DISCMLR
Morra et al., 1991DerivativeMLR
Coleman et al., 1993DISCMLR
Sudduth and Hummel, 1993aAveragingMLR, PCR, PLS
Ben-Dor and Banin, 1994Averaging, derivativeMLR
Ben-Dor and Banin, 1995Averaging, derivativeMLR
Coleman and Tadesse, 1995DISCMLR
Hummel et al., 1996MLR, PLS
Galvdo, et al., 1997BRPCA, MLR
Palacios-Orueta and Ustin, 1998AveragingCDABD, PCA
Ehsani et al. 1999PCR, PLS
GopalaPillai and Tian, 1999UnCls
Malley et al., 1999Averaging, derivativeMLR
Varvel et al., 1999CORR
Barnes and Baker, 2000UnCls, SuCls
Chang et al., 2001Averaging, derivativePCR
Ehsani et al., 2001SG, FFT, waveletBRCORR
Hummel et al., 2001MLR
Slaughter et al., 2001PLS
Thomasson et al., 2001aAveragingMLR
Cozzolino and Moron, 2003Averaging, derivativePLS
Lee et al., 2003PLS
Leon et al., 2003BRPCA, MLR
Odhiambo et al., 2003F-NN
Stangeland et al., 2003Averaging, derivativePLS
Bajwa and Tian, 2005DerivativePLS
Bogrekci and Lee, 2005aSG, derivativeBR, DISCMLR, PLS
Bogrekci and Lee, 2005bSG, derivativeDISCPCA, MLR, PLS
Stamatiadis et al., 2005BRMLR
Kaleita et al., 2005K-mean smoothingPLS
Ge and Thomasson, 2006WaveletMLR
Waiser et al., 2007Averaging, derivativePLS
Tab.3  Summary of information reported for remote sensing of soil properties in precision agriculture on data analysis techniques.
1 Abdel-Hamid M A (1993). Surface soil reflectance as a criterion of soil classification related to some physical and chemical soil properties. Egypt J Soil Sci , 33(2): 149–162
2 Adamchuk V I, Hummel J W, Morgan M T, Upadhyaya S K (2004). On-the-go soil sensors for precision agriculture. Comput Electron Agric , 44(1): 71–91
doi: 10.1016/j.compag.2004.03.002
3 Agbu P A, Fehrenbacher D J, Jansen I J (1990). Soil property relation-ships with SPOT satellite digital data in east central Illinois. Soil Sci Soc Am J , 54(3): 807–812
doi: 10.2136/sssaj1990.03615995005400030031x
4 Bajwa S G, Tian L F (2005). Soil fertility characterization in agricultural fields using hyperspectral remote sensing. Trans ASABE , 48(6): 2399–2406
5 Barnes E M, Baker M G (2000). Multispectral data for mapping soil texture: possibilities and limitations. Appl Eng Agric , 16(6): 731–741
6 Baumgardner M F, Silva L F, Biehl L L, Stoner E R (1986). Reflectance properties of soils. Adv Agron , 38: 1–44
doi: 10.1016/S0065-2113(08)60672-0
7 Ben-Dor E (2002). Quantitative remote sensing of soil properties. Adv Agron , 75: 173–243
doi: 10.1016/S0065-2113(02)75005-0
8 Ben-Dor E, Banin A (1994). Visible and near-infrared (0.4–1.1 μm) analysis of arid and semiarid soils. Remote Sens Environ , 48(3): 261–274
doi: 10.1016/0034-4257(94)90001-9
9 Ben-Dor E, Banin A (1995). Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J , 59(2): 364–372
doi: 10.2136/sssaj1995.03615995005900020014x
10 Ben-Dor E, Irons J R, Epema G F (2003). Soil reflectance. In Remote Sensfor the Earth Sciences: Manual of Remote Sens, Rencz A N , 3rd ed. 3, 111–188 . New York: John Wiley & Son Inc
11 Bogrekci I, Lee W S (2005a). Improving phosphate sensing by eliminating soil particle size effect in spectral measurement. Trans ASABE , 48(5): 1971–1978
12 Bogrekci I, Lee W S (2005b). Spectral measurement of common soil phosphates. Trans ASABE , 48(6): 2371–2378
13 Bogrekci I, Lee W S, Herrera J (2004). Spectral Signatures for the Lake Okeechobee Soils using UV-VIS-NIR Spectroscopy and Predicting Phosphorus Concentrations. ASABE Paper No. 041076. St Joseph, Mich: ASABE
14 Brown D J, Shepherd K D, Walsh M G, Mays M D, Reinsch T G (2005). Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma (In press)
15 Chang C, Laird D A, Mausbach M J, Hurburgh C R (2001). Near-infrared reflectance spectroscopy — principal components regression analysis of soil properties. Soil Sci Soc Am J , 65(2): 480–490
doi: 10.2136/sssaj2001.652480x
16 Christy C D, Drummond P, Larid D A (2003). An On-the-go Spectral Reflectance Sensor for Soil. ASABE Paper No. 031044. St Joseph, Mich: ASABE
17 Coleman T L, Agbu P A, Montgomery O L (1993). Spectral differentiation of surface soils and soil properties: Is it possible from space platforms? Soil Sci , 155(4): 283–293
doi: 10.1097/00010694-199304000-00007
18 Coleman T L, Agbu P A, Montgomery O L, Gao T, Prasad S (1991). Spectral band selection for quantifying selected properties in highly weathered soil. Soil Sci , 151(5): 355–361
doi: 10.1097/00010694-199105000-00005
19 Coleman T L, Tadesse W (1995). Differentiating soil physical properties from multiple band DOQ data. Soil Sci , 160(2): 81–91
20 Condit H R (1970). The spectral reflectance of American soils. Photogramm Eng Remote Sensing , 36: 955–966
21 Condit H R (1972). Application of characteristic vector analysis to the spectral energy distribution of daylight and the spectral reflectance of american soils. Appl Opt , 11(1): 74–86
pmid:20111459
22 Cozzolino D, Moron A (2003). The potential of near-infrared reflectance spectroscopy to analyze soil chemical and physical characteristics. J Agric Eng , 140: 65–71
23 Dalal R C, Henry R J (1986). Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectroscopy. Soil Sci Soc Am J , 50(1): 120–123
doi: 10.2136/sssaj1986.03615995005000010023x
24 Ehsani M R, Upadhyaya S K, Fawcett W R, Protsailo L V, Slaughter D (2001). Feasibility of detecting soil nitrate content using a mid-infrared technique. Trans ASAE , 44(6): 1931–1940
25 Ehsani M R, Upadhyaya S K, Slaughter D, Shafii S, Pelletier M (1999). A NIR technique for rapid determination of soil mineral nitrogen. Precis Agric , 1(2): 219–234
doi: 10.1023/A:1009916108990
26 Frazier B E, Cheng Y (1989). Remote sensing of soils in the eastern Palouse region with Landsat thematic mapper. Remote Sens Environ , 28: 317–325
doi: 10.1016/0034-4257(89)90123-5
27 Galvdo L S, Vitorello I, Formaggio A B (1997). Relationships of spectral reflectance and color among surface and subsurface horizons of tropical soil profiles. Remote Sens Environ , 61(1): 24–33
doi: 10.1016/S0034-4257(96)00219-2
28 Ge Y, Morgan C L S, Thomasson J A, Waiser T (2007). A new perspective to near infrared reflectance spectroscopy: a wavelet approach. Trans ASABE , 50(1): 303–311
29 Ge Y, Thomasson J A (2006). Wavelet incorporated spectral analysis for soil property determination. Trans ASABE , 49(4): 1193–1201
30 GopalaPillai S, Tian L (1999). In-field variability detection and spatial yield modeling for corn using digital aerial imaging. Trans ASAE , 42(6): 1911–1920
31 Hummel J W, Gaultney L D, Sudduth K A (1996). Soil property sensing fro site-specific crop management. Comput Electron Agric , 14(2–3): 121–136
doi: 10.1016/0168-1699(95)00043-7
32 Hummel J W, Sudduth K A, Hollinger S E (2001). Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor. Comput Electron Agric , 32(2): 149–165
doi: 10.1016/S0168-1699(01)00163-6
33 Hutchinson J M S (2003). Estimating near-surface soil moisture using active microwave satellite imagery and optical sensor inputs. Trans ASABE , 46(2): 225–236
34 Kaleita A L, Tian L (2002). Remote Sensing of Site-specific Soil Characteristics for Precision Farming. ASABE Paper No. 021078. St Joseph, Mich: ASABE
35 Kaleita A L, Tian L, Yao H (2003). Soil Moisture Estimation from Remotely Sensed Hyperspectral Data. ASABE Paper No. 031047. St Joseph, Mich: ASABE
36 Kaleita A L, Tian L F, Hirschi M C (2005). Relationship between soil moisture content and soil surface reflectance. Trans ASABE , 48(5): 1979–1986
37 Kristof S J (1971). Preliminary multispectral studies of soils. J Soil Water Conserv , 26: 15–18
38 Kristof S J, Zachary A L (1974). Mapping soil features from multispectral scanner data. Photogramm Eng Remote Sensing , 40: 1427–1434
39 Lee W S, Sanchez J F, Mylavarapu R S, Choe J S (2003). Estimating chemical properties of Florida soils using spectral reflectance. Trans ASAE , 46(5): 1443–1453
40 Leon C T, Shaw D R, Cox M S, Abshire M J, Ward B, Wardlaw M C III, Watson C (2003). Utility of remote sensing in predicting crop and soil characteristics. Precis Agric , 4(4): 359–384
doi: 10.1023/A:1026387830942
41 Lobell D B, Asner G P (2002). Moisture effects on soil reflectance. Soil Sci Soc Am J , 66(3): 722–727
doi: 10.2136/sssaj2002.0722
42 Malley D F, Yesmin L, Wray D, Edwards S (1999). Application of near-infrared spectroscopy in analysis of soil mineral nutrients. Commun Soil Sci Plant Anal , 30(7): 999–1012
doi: 10.1080/00103629909370263
43 Merry R H, Janik L J (2001). Mid-infrared spectroscopy for rapid and cheap analysis of soil. In: Proc. 10th Austrian Agronomy Conf., CD-ROM. Australian Society of Agronomy. Hobart, Australia
44 Moran M S, Inoue Y, Barnes E M (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens Environ , 61(3): 319–346
doi: 10.1016/S0034-4257(97)00045-X
45 Morra M J, Mall M H, Freeborn L L (1991). Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy. Soil Sci Soc Am J , 55(1): 288–291
doi: 10.2136/sssaj1991.03615995005500010051x
46 Munsell Color (1975). Munsell soil color charts. MacBeth Division of Kollmorgen Corporation. Baltimore
47 Mustard J F, Sunshine J M (2003). Spectral analysis for earth science: Investigation using remote sensing data. In: Remote Sens for the Earth Sciences: Manual of Remote Sens , 3rd ed, Vol 3, Rencz A N, ed.New York: John Wiley & Son Inc, 251–306
48 Odhiambo L O, Freeland R S, Yoder R E, Hines J W (2003). Investigation of a fuzzyneural network application in classification of soil using ground-penetration radar imagery. Appl Eng Agric , 20(1): 109–117
49 Palacios-Orueta A, Ustin S L (1998). Remote sensing of soil properties in the Santa Monica Mountains I. spectral analysis. Remote Sens Environ , 65(2): 170–183
doi: 10.1016/S0034-4257(98)00024-8
50 Pierce F J, Nowak P (1999). Aspects of precision agriculture. Adv Agron , 67: 1–85
doi: 10.1016/S0065-2113(08)60513-1
51 Rice T D, Nickerson D, O’Neal A M, Thorp J (1941). Preliminary color standards and color names for soils. MiscPublication No. 425. USDA
52 Samuelson J R, Stelford M, Rooney D J (2002). The Importance and Value of Soil Information. ASABE Paper No. 021093. St Joseph, Mich: ASABE
53 Shepherd K D, Walsh M G (2002). Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J , 66(3): 988–998
doi: 10.2136/sssaj2002.0988
54 Slaughter D C, Pelletier M G, Upadhyaya S K (2001). Sensing soil moisture using NIR spectroscopy. Appl Eng Agric , 17(2): 241–247
55 Stamatiadis S, Christofides C, Tsadilas C, Samaras V, Schepers J S, Francis D (2005). Ground-sensor soil reflectance as related to soil properties and crop response in a cotton field. Precis Agric , 6(4): 399–411
doi: 10.1007/s11119-005-2326-3
56 Stangeland D L, Montross M D, Stombaugh T S, Shearer S A (2003). Use of Nearinfrared Reflectance for Soil pH and Buffer pH Measurement. ASABE Paper No. 031045. St Joseph, Mich: ASABE
57 Stoner E, Baumgardner M F, Biehl L L, Robinson B F (1980). Atlas of soil reflectance properties. Research Bulletin 962. Agricultural Experiment Station, Indian Research. Purdue University, West Lafayette, IN
58 Sudduth K A, Hummel J W (1991). Evaluation of reflectance methods for soil organic matter sensing. Trans ASAE , 34(4): 1900–1909
59 Sudduth K A, Hummel J W (1993a). Portable near-infrared spectrophotometer for rapid soil analysis. Trans ASAE , 36(1): 185–193
60 Sudduth K A, Hummel J W (1993b). Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer. Trans ASAE , 36(6): 1571–1582
61 Sudduth K A, Hummel J W (1996). Geographic operating range evaluation of a NIR soil sensor. Trans ASAE , 39(5): 1599–1604
62 Sullivan D G, Shaw J N, Rickman D (2005). IKONOS imagery to estimate surface soil property variability in two Alabama physiographies. Soil Sci Soc Am J , 69(6): 1789–1798
doi: 10.2136/sssaj2005.0071
63 Thomasson J A, Sui R, Cox M S, Al-Rajehy A (2001a). Soil reflectance sensing determining soil properties in precision agriculture. Trans ASAE , 44(6): 1445–1453
64 Thomasson J A, Wooten J R, Cox M S, Al-Rajehy A, Sui R (2001b). Soil Reflectance Properties: Ground-based Versus Remotely Sensed Measurements. ASABE Paper No. 011018. St Joseph, Mich: ASABE
65 USDA (1993). Soil Survey Manual. USDA Handbook No. 18. NRCS, Soil Survey Division Staff, Washington DC
66 Varvel G E, Schlemmer M R, Schepers J S (1999). Relationship between spectral data from an aerial image and soil organic matter and phosphorus levels. Precis Agric , 1(3): 291–300
doi: 10.1023/A:1009973008521
67 Waiser T, Morgan C L S, Brown D J, Hallmark C T (2007). In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Sci Soc Am J , 71(2): 389–396
doi: 10.2136/sssaj2006.0211
[1] Conghui LI, Lili LIN, Zhenbang HAO, Christopher J. POST, Zhanghao CHEN, Jian LIU, Kunyong YU. Developing a USLE cover and management factor (C) for forested regions of southern China[J]. Front. Earth Sci., 2020, 14(3): 660-672.
[2] Yonghui WANG, Kexiang LIU, Zhaopeng WU, Li JIAO. Comparison and analysis of three estimation methods for soil carbon sequestration potential in the Ebinur Lake Wetland, China[J]. Front. Earth Sci., 2020, 14(1): 13-24.
[3] Mohammad Saeid MIRAKHORLO, Majid RAHIMZADEGAN. Evaluating estimated sediment delivery by Revised Universal Soil Loss Equation (RUSLE) and Sediment Delivery Distributed (SEDD) in the Talar Watershed, Iran[J]. Front. Earth Sci., 2020, 14(1): 50-62.
[4] Zhitao WU, Mingyue WANG, Hong ZHANG, Ziqiang DU. Vegetation and soil wind erosion dynamics of sandstorm control programs in the agro-pastoral transitional zone of northern China[J]. Front. Earth Sci., 2019, 13(2): 430-443.
[5] Jingjie ZANG, Yanyan LEI, Huan YANG. Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions[J]. Front. Earth Sci., 2018, 12(4): 862-876.
[6] Xiaoping LIU, Shuli CHEN, Li ZHUO, Jun LI, Kangning HUANG. Multi-sensor image registration by combining local self-similarity matching and mutual information[J]. Front. Earth Sci., 2018, 12(4): 779-790.
[7] Yanhong LI, Mingliang ZHAO, Fadong LI. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake[J]. Front. Earth Sci., 2018, 12(3): 611-624.
[8] Bilaşco ŞTEFAN, Roşca SANDA, Fodorean IOAN, Vescan IULIU, Filip SORIN, Petrea DĂNUŢ. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models[J]. Front. Earth Sci., 2018, 12(2): 311-324.
[9] Lijun WANG, Wendong TAO, Richard C. SMARDON, Xue XU, Xinwei LU. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China[J]. Front. Earth Sci., 2018, 12(2): 397-407.
[10] Jianguo LI, Wenhui YANG, Qiang LI, Lijie PU, Yan XU, Zhongqi ZHANG, Lili LIU. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China[J]. Front. Earth Sci., 2018, 12(2): 339-348.
[11] Guan WANG, Yuan LIU, Jiao CHEN, Feifan REN, Yuying CHEN, Fangzhou YE, Weiguo ZHANG. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China[J]. Front. Earth Sci., 2018, 12(1): 125-133.
[12] Jianwen BAI, Zhenyao SHEN, Tiezhu YAN. A comparison of single- and multi-site calibration and validation: a case study of SWAT in the Miyun Reservoir watershed, China[J]. Front. Earth Sci., 2017, 11(3): 592-600.
[13] S.R. FASSNACHT, J.I. LÓPEZ-MORENO, C. MA, A.N. WEBER, A.K.D. PFOHL, S.K. KAMPF, M. KAPPAS. Spatio-temporal snowmelt variability across the headwaters of the Southern Rocky Mountains[J]. Front. Earth Sci., 2017, 11(3): 505-514.
[14] Hongfen ZHU, Rutian BI, Yonghong DUAN, Zhanjun XU. Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau[J]. Front. Earth Sci., 2017, 11(2): 397-406.
[15] David BRAND,Chathurika WIJEWARDANA,Wei GAO,K. Raja REDDY. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth[J]. Front. Earth Sci., 2016, 10(4): 607-620.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed