|
|
|
Removal mechanisms of heavy metal pollution from urban runoff in wetlands |
Zhiming ZHANG, Baoshan CUI( ), Xiaoyun FAN |
| School of Environment, Beijing Normal University; State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing 100875, China |
|
|
|
|
Abstract Solid particles, particularly urban surface dust in urban environments contain large quantities of pollutants. It is considered that urban surface dust is a major pollution source of urban stormwater runoff. The stormwater runoff washes away urban surface dust and dissolves pollutants adsorbed onto the dust and finally discharges into receiving water bodies. The quality of receiving water bodies can be deteriorated by the dust and pollutants in it. Polluted waters can be purified by wetlands with various physical, chemical, and biologic processes. These processes have been employed to treat pollutants in urban stormwater runoff for many years because purification of treatment wetlands is a natural process and a low-cost method. In this paper, we reviewed the processes involved during pollutants transport in urban environments. Particularly, when the urban stormwater runoff enters into wetlands, their removal mechanisms involving various physical, chemical and biologic processes should been understood. Wetlands can remove heavy metals by absorbing and binding them and make them form a part of sediment. However, heavy metals can be released into water when the conditions changed. This information is important for the use of wetlands for removing of pollutants and reusing stormwater.
|
| Keywords
wetlands
heavy metal
stormwater runoff
removal mechanisms
|
|
Corresponding Author(s):
CUI Baoshan,Email:cuibs@bnu.edu.cn, cuibs67@yahoo.com
|
|
Issue Date: 05 December 2012
|
|
| 1 |
Al-Khashman O A (2004). Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmos Environ , 38(39): 6803–6812 doi: 10.1016/j.atmosenv.2004.09.011
|
| 2 |
Almas A, Lombnaes P, Sogn T, Mulder J (2006). Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere , 62(10): 1647–1655 doi: 10.1016/j.chemosphere.2005.06.020 pmid:16084561
|
| 3 |
Al-Raihi M A, Al-Shayeb S M, Seaward M R D, Edwards H G M (1996). Particle size effect for metal pollution analysis of atmospherically deposited dust. Atmos Environ , 30(1): 145–153 doi: 10.1016/1352-2310(95)00164-T
|
| 4 |
Alvarezayuso E, García-Sánchez A (2003). Sepiolite as a feasible soil additive for the immobilization of cadmium and zinc. Sci Total Environ , 305(1–3): 1–12 doi: 10.1016/S0048-9697(02)00468-0 pmid:12670753
|
| 5 |
Apeagyei E, Bank M S, Spengler J D (2011). Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos Environ , 45(13): 2310–2323 doi: 10.1016/j.atmosenv.2010.11.015
|
| 6 |
Boller M A (1997). Tracking heavy metals reveals sustainability deficits of urban drainage systems. Water Sci Technol , 35(9): 77–87 doi: 10.1016/S0273-1223(97)00186-8
|
| 7 |
Calmano W, Hong J F, Forstner U (1993). Binding and mobilization of heavy metal in contaminated sediment affected by the pH and redox potential. Water Sci Technol , 28(8–9): 223–235
|
| 8 |
Cao J Y, Zhang G J, Mao Z S, Fang Z H, Yang C (2009). Precipitation of valuable metals from bioleaching solution by biogenic sulfides. Miner Eng , 22(3): 289–295 doi: 10.1016/j.mineng.2008.08.006
|
| 9 |
Celis R, Hermosin M C, Cornejo J (2000). Heavy metal adsorption by functionalised clays. Environ Sci Technol , 34(21): 4593–4599 doi: 10.1021/es000013c
|
| 10 |
Chang J, Liu M, Li X H, Yu J, Lin X, Wang L L, Gao L (2009). Dissolved-particulate partitioning of heavy metals in urban road runoff of Shanghai. Advance Water Science , 20: 714–720 (in Chinese)
|
| 11 |
Charlesworth S, Everett M, McCarthy R, Ordó?ez A, Miguel E (2003). A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ Int , 29(5): 563–573 doi: 10.1016/S0160-4120(03)00015-1 pmid:12742399
|
| 12 |
Chattopadhyay G, Lin K C P, Feitz A J (2003). Household dust metal levels in the Sydney metropolitan area. Environ Res , 93(3): 301–307 doi: 10.1016/S0013-9351(03)00058-6 pmid:14615241
|
| 13 |
Cheng S P, Grosse W, Karrenbrock F, Thoennessen M (2002). Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng , 18(3): 317–325 doi: 10.1016/S0925-8574(01)00091-X
|
| 14 |
DeBusk T A, Laughlin R B Jr, Schwartz L N (1996). Retention and compartmentalization of lead and cadmium in wetland microcosms. Water Res , 30(11): 2707–2716 doi: 10.1016/S0043-1354(96)00184-4
|
| 15 |
DeBusk W F (1999). Wastewater Treatment Wetlands: Contaminant Removal Processes. Gainesville University of Florida . http://edis.ifas.ufl.edu (accessed 10 Oct 2011)
|
| 16 |
Deng H, Ye Z H, Wong M H (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut , 132(1): 29–40 doi: 10.1016/j.envpol.2004.03.030 pmid:15276271
|
| 17 |
Dong J, Mao W H, Zhang G P, Wu F B, Cai Y (2007). Root excretion and plant tolerance to cadmium toxicity–a review. Plant Soil Environ , 53: 193–200
|
| 18 |
Doyle M O, Otte M L (1997). Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environ Pollut , 96(1): 1–11 doi: 10.1016/S0269-7491(97)00014-6 pmid:15093426
|
| 19 |
Droppo I G, Leppard G G, Flannigan D T, Liss S N (1997). The freshwater floc: a functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties. Water Air Soil Pollut , 99(1–4): 43–53 doi: 10.1007/BF02406843
|
| 20 |
Dulaing G, Ryckegem G, Tack F, Verloo M (2006). Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere , 63(11): 1815–1823 doi: 10.1016/j.chemosphere.2005.10.034 pmid:16330074
|
| 21 |
Duzgoren-Aydin N S, Wong C S C, Aydin A, Song Z, You M, Li X D (2006). Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China. Environ Geochem Health , 28(4): 375–391 doi: 10.1007/s10653-005-9036-7 pmid:16752128
|
| 22 |
Eckley C S, Branfireun B (2009). Simulated rain events on an urban roadway to understand the dynamics of mercury mobilization in stormwater runoff. Water Res , 43(15): 3635–3646 doi: 10.1016/j.watres.2009.05.022 pmid:19576611
|
| 23 |
El-Shatnawi M K J, Makhadmeh I M (2001). Ecophysiology of the planterhizosphere system. J Agron Crop Sci , 187(1): 1–9 doi: 10.1046/j.1439-037X.2001.00498.x
|
| 24 |
EPRI (1990). Trace Element Removal by Adsorption/Co-precipitation. Process Design Manual, GS-7005 . Palo Alto, CA
|
| 25 |
Faiz Y, Tufail M, Javed M T, Chaudhry M M, Naila-Siddique (2009). Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchem J , 92(2): 186–192 doi: 10.1016/j.microc.2009.03.009
|
| 26 |
Ferreira-Baptista L, Miguel E (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ , 39(25): 4501–4512 doi: 10.1016/j.atmosenv.2005.03.026
|
| 27 |
Fletcher T D, Deletic A, Mitchell V G, Hatt B E (2008). Reuse of urban runoff in Australia: a review of recent advances and remaining challenges. J Environ Qual , 37(5_Supplement): S116–S127 doi: 10.2134/jeq2007.0411 pmid:18765758
|
| 28 |
Gan H Y, Zhou M N, Li D Q, Zhou Y Z (2007). Characteristics of heavy metal pollution in highway runoff. Urban Environment & Urban Ecology , 20: 34–37 (in Chinese)
|
| 29 |
Gevao B, Semple K T, Jones K C (2000). Bound pesticide residues in soils: a review. Environ Pollut , 108(1): 3–14 doi: 10.1016/S0269-7491(99)00197-9 pmid:15092962
|
| 30 |
Gnecco I, Berretta C, Lanza L G, La Barbera P (2005). Storm water pollution in the urban environment of Genoa, Italy. Atmos Res , 77(1–4): 60–73 doi: 10.1016/j.atmosres.2004.10.017
|
| 31 |
Gopal B, Ghosh D (2008). Natural Wetlands. Amsterdam: Elsevier Press doi: 10.1016/B978-008045405-4.00067-7
|
| 32 |
Gromairemertz M C, Garnaud S, Gonzalez A, Chebbo G (1999). Characterisation of urban runoff pollution in Paris. Water Sci Technol , 39(2): 1–8 doi: 10.1016/S0273-1223(99)00002-5
|
| 33 |
Groudev S N, Bratcova S G, Komnitsas K (1999). Treatment of waters polluted with radioactive elements and heavy metals by means of a laboratory passive system. Miner Eng , 12(3): 261–270 doi: 10.1016/S0892-6875(99)00004-7
|
| 34 |
Han Y M, Du P X, Cao J J, Eric S P (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ , 355(1–3):176–186 doi: 10.1016/j.scitotenv.2005.02.026
|
| 35 |
Hares R J, Ward N I (2004). Sediment accumulation in newly constructed vegetative treatment facilities along a new major road. Sci Total Environ , 334–335 : 473–479 doi: 10.1016/j.scitotenv.2004.04.051 pmid:15504533
|
| 36 |
Hartley W, Dickinson N M (2010). Exposure of an anoxic and contaminated canal sediment: mobility of metal(loid)s. Environ Pollut , 158(3): 649–657 doi: 10.1016/j.envpol.2009.10.030 pmid:19913340
|
| 37 |
Huang J L, Du P F, Ou Z D, Lei M H, Zhao D Q, Ho M H, Wang Z S (2006). Characterization of urban roadway runoff in Macau. China Environ Sci , 26: 469–473 (in Chinese)
|
| 38 |
ITRC (Interstate Technology & Regulatory Council) (2003). Technical and Regulatory Guidance Document for Constructed Treatment Wetlands. The Interstate Technology & Regulatory Council Wetlands Team
|
| 39 |
Jaradat Q M, Momani K A, Jbarah A A Q, Massadeh A (2004). Inorganic analysis of dust fall and office dust in an industrial area of Jordan. Environ Res , 96(2): 139–144 doi: 10.1016/j.envres.2003.12.005 pmid:15325874
|
| 40 |
Joshi U M, Vijayaraghavan K, Balasubramanian R (2009). Elemental composition of urban street dusts and their dissolution characteristics in various aqueous media. Chemosphere , 77(4): 526–533 doi: 10.1016/j.chemosphere.2009.07.043 pmid:19692111
|
| 41 |
Kabata-Pendias A, Pendias H (2001). Trace Elements in Soils and Plants. 3rd ed. Boca Raton , FL: CRC Press
|
| 42 |
Kalavrouziotis I K, Koukoulakis P H (2009). The environmental impact of the platinum group elements (Pt, Pd, Rh) emitted by the automobile catalyst converters. Water Air Soil Pollut , 196(1–4): 393–402 doi: 10.1007/s11270-008-9786-9
|
| 43 |
Kelderman P, Osman A A (2007). Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands). Water Res , 41(18): 4251–4261 doi: 10.1016/j.watres.2007.05.058 pmid:17640704
|
| 44 |
Khairy M A, Barakat A O, Mostafa A R, Wade T L (2011). Multielement determination by flame atomic absorption of road dust samples in Delta Region, Egypt. Microchem J , 97(2): 234–242 doi: 10.1016/j.microc.2010.09.012
|
| 45 |
Khan S, Ahmad I, Shah M T, Rehman S, Khaliq A (2009). Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manage , 90(11): 3451–3457 doi: 10.1016/j.jenvman.2009.05.026 pmid:19535201
|
| 46 |
Kr?pfelová L, Vymazal J, ?vehla J, Stíchová J (2009). Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environ Pollut , 157(4): 1186–1194 doi: 10.1016/j.envpol.2008.12.003 pmid:19124182
|
| 47 |
Küsel K (2003). Microbial cycling of iron and sulfur in acidic coal mining lake sediments. Water Air Soil Pollut , 3: 67–90
|
| 48 |
Lacerda L D, Carvalho C E V, Tanizaki K F, Ovalle A R C, Rezende C E (1993). The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica , 25(3): 252–257 doi: 10.2307/2388783
|
| 49 |
Legret M, Pagotto C (1999). Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci Total Environ , 235(1–3): 143–150 doi: 10.1016/S0048-9697(99)00207-7 pmid:10535115
|
| 50 |
Li C, Li F Y, Zhang Y, Liu T W, Hou W (2008a). Spatial distribution characteristics of heavy metals in street dust in Shenyang City. Ecol Environ , 17: 560–564 (in Chinese)
|
| 51 |
Li F Q, Pan H M, Ye W, Zhu L D, Wang Z G (2008b). Specificity of the heavy metal pollution and the ecological hazard in urban dust. Journal of Anhui Agricultural Sciences , 36: 2495–2498 (in Chinese)
|
| 52 |
Li H, Shi J Q, Shen G, Ji X L, Fu D F (2009). Characteristics of rainfall runoff discharge rule caused by heavy metals on express highway. Journal of Southeast University , 39(2): 345–349
|
| 53 |
Li Y C, Wu H, Luo W H (2008c). Research on the polluting characterization of heavy metals caused by urban runoff in Huiyang District: I. Analysis of heavy metal contents in urban surface Sediments. Research of Environmental Sciences , 21(3): 51–56 (in Chinese)
|
| 54 |
Li Z P, Chen Y C, Yang X C, Wei S Q (2006). Heavy metals contamination of street dusts in core zone of Chongqing Municipality. J Soil Water Conserv , 20(1): 114–116, 138 (in Chinese)
|
| 55 |
Liang Y, Wong M H (2003). Spatial and temporal organic and heavy metal pollution at Mai Po Marshes Nature Reserve, Hong Kong. Chemosphere , 52(9): 1647–1658 doi: 10.1016/S0045-6535(03)00505-8 pmid:12867199
|
| 56 |
Lisiewicz M, Heimburger R, Golimowski J (2000). Granulometry and the content of toxic and potentially toxic elements in vacuum-cleaner collected, indoor dusts of the city of Warsaw. Sci Total Environ , 263(1–3): 69–78 doi: 10.1016/S0048-9697(00)00667-7 pmid:11194164
|
| 57 |
Liu Y Y, Liu H F, Liu M (2009). Concentrations and health risk assessment of urban surface dust in Urumqi. Arid Zone Research , 26(5): 750–754 (in Chinese) doi: 10.3724/SP.J.1148.2009.00750
|
| 58 |
Lizama A K, Fletcher T D, Sun G (2011). Removal processes for arsenic in constructed wetlands. Chemosphere , 84(8): 1032–1043 doi: 10.1016/j.chemosphere.2011.04.022 pmid:21549410
|
| 59 |
Locke M A, Gaston L A, Zablotowicz R M (1997). Acifluorfen sorption and sorption kinetics in soil. J Agric Food Chem , 45(1): 286–293 doi: 10.1021/jf960240r
|
| 60 |
Lu X W, Wang L J, Li L Y, Lei K, Huang L, Kang D (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater , 173(1–3): 744–749 doi: 10.1016/j.jhazmat.2009.09.001 pmid:19811870
|
| 61 |
Luo H B, Luo L, Huang G, Liu P, Li J X, Hu S, Wang F X, Xu R, Huang X X (2009). Total pollution effect of urban surface runoff. J Environ Sci , 21(9): 1186–1193 (in Chinese) doi: 10.1016/S1001-0742(08)62402-X pmid:19999964
|
| 62 |
Ma Z B, Li C S, Zeng H (2011), Characterization of stormwater runoff pollution in rapid urbanizing areas. J Soil Water Conserv , 25(3):1–6 (in Chinese) doi: 1009-2242(2011)03-0001-06
|
| 63 |
MacFarlane G R, Pulkownik A, Burchett M D (2003). Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk) Vierh: biological indication potential. Environ Pollut , 123(1): 139–151 doi: 10.1016/S0269-7491(02)00342-1 pmid:12663214
|
| 64 |
Machemer S D, Wildeman T R (1992). Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland. J Contam Hydrol , 9(1–2): 115–131 doi: 10.1016/0169-7722(92)90054-I
|
| 65 |
Makepeace D K, Smith D W, Stanley S J (1995). Urban stormwater quality: summary of contaminant data. Crit Rev Environ Sci Technol , 25(2): 93–139 doi: 10.1080/10643389509388476
|
| 66 |
Malandrino M, Abollino O, Giacomino A, Aceto M, Mentasti E (2006). Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. J Colloid Interface Sci , 299(2): 537–546 doi: 10.1016/j.jcis.2006.03.011 pmid:16581085
|
| 67 |
Matagi S V, Swai D, Mugabe R (1998). A review of heavy metal removal mechanisms in wetlands. African Journal of Tropical Hydrobiology and Fisheries , 8: 23–35
|
| 68 |
Mays P A, Edwards G S (2001). Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol Eng , 16(4): 487–500 doi: 10.1016/S0925-8574(00)00112-9
|
| 69 |
McAlister J J, Smith B J, T?r?k A (2006). Element partitioning and potential mobility within surface dusts on buildings in a polluted urban environment, Budapest. Atmos Environ , 40(35): 6780–6790 doi: 10.1016/j.atmosenv.2006.05.071
|
| 70 |
Meharg A A, Cairney J W (1999). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res , 30: 69–112 doi: 10.1016/S0065-2504(08)60017-3
|
| 71 |
Méndez-Armenta M, Ríos C (2007). Cadmium neurotoxicity. Environ Toxicol Pharmacol , 23(3): 350–358 doi: 10.1016/j.etap.2006.11.009 pmid:21783780
|
| 72 |
Miguel E, Llamas J F, Chacón E, Berg T, Larssen S, Royset O, Vadset M (1997). Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ , 31(17): 2733–2740 doi: 10.1016/S1352-2310(97)00101-5
|
| 73 |
Moorhead K K, Reddy K R (1988). Oxygen transport through selected aquatic macrophytes. J Environ Qual , 17(1): 138–142 doi: 10.2134/jeq1988.00472425001700010022x
|
| 74 |
Morse J W (1994). Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability. Mar Chem , 46(1-2): 1–6 doi: 10.1016/0304-4203(94)90040-X
|
| 75 |
Mulligan C N, Davarpanah N, Fukue M, Inoue T (2009). Filtration of contaminated suspended solids for the treatment of surface water. Chemosphere , 74(6): 779–786 doi: 10.1016/j.chemosphere.2008.10.055 pmid:19084263
|
| 76 |
Murakami M, Fujita M, Furumai H, Kasuga I, Kurisu F (2009). Sorption behavior of heavy metal species by soakaway sediment receiving urban road runoff from residential and heavily trafficked areas. J Hazard Mater , 164(2–3): 707–712 doi: 10.1016/j.jhazmat.2008.08.052 pmid:18823702
|
| 77 |
Murakami M, Nakajima F, Furumai H (2008). The sorption of heavy metal species by sediments in soakaways receiving urban road runoff. Chemosphere , 70(11): 2099–2109 doi: 10.1016/j.chemosphere.2007.08.073 pmid:17959221
|
| 78 |
Ngabe B, Bidleman T F, Scott G I (2000). Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina. Sci Total Environ , 255(1–3): 1–9 doi: 10.1016/S0048-9697(00)00422-8 pmid:10898390
|
| 79 |
Oh S, Kwak M Y, Shin W S (2009). Competitive sorption of lead and cadmium onto sediments. Chem Eng J , 152(2–3): 376–388 doi: 10.1016/j.cej.2009.04.061
|
| 80 |
Otte M L, Kearns C C, Doyle M O (1995). Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bull Environ Contam Toxicol , 55(1): 154–161 doi: 10.1007/BF00212403 pmid:7663086
|
| 81 |
Papiri S, Todeschini S, Valcher P (2008). Pollution in stormwater runoff in a highway toll gate area. In: The 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK , 2008, 1–10
|
| 82 |
Papoyan A, Pi?eros M, Kochian L V (2007). Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol , 175(1): 51–58 doi: 10.1111/j.1469-8137.2007.02073.x pmid:17547666
|
| 83 |
Peng J F, Song Y H, Yuan P, Cui X Y, Qiu G L (2009). The remediation of heavy metals contaminated sediment. J Hazard Mater , 161(2–3): 633–640 doi: 10.1016/j.jhazmat.2008.04.061 pmid:18547718
|
| 84 |
Quan W M, Han J D, Shen A L, Ping X Y, Qian P L, Li C J, Shi L Y, Chen Y Q (2007). Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Mar Environ Res , 64(1): 21–37 doi: 10.1016/j.marenvres.2006.12.005 pmid:17306362
|
| 85 |
Rangsivek R, Jekel M R (2005). Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Res , 39(17): 4153–4163 doi: 10.1016/j.watres.2005.07.040 pmid:16181656
|
| 86 |
Rasmussen P E, Subramanian K S, Jessiman B J (2001). A multi-element profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada. Sci Total Environ , 267(1–3): 125–140 doi: 10.1016/S0048-9697(00)00775-0 pmid:11286208
|
| 87 |
Reboreda R, Ca?ador I (2007). Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut , 146(1): 147–154 doi: 10.1016/j.envpol.2006.05.035 pmid:16996176
|
| 88 |
Reinelt L E, Horner R R (1995). Pollutant removal from stormwater runoff by palustrine wetlands based on comprehensive budgets. Ecol Eng , 4(2): 77–97 doi: 10.1016/0925-8574(94)00002-M
|
| 89 |
Richard F C, Bourg A C M (1991). Aqueous geochemistry of chromium: a review. Water Res , 25(7): 807–816 doi: 10.1016/0043-1354(91)90160-R
|
| 90 |
Salomons W, Stigliani W M (1995). Biogeodynamics of Pollutants in Soils and Sediments: Risk Assessment of Delayed and Non-linear Responses. New York: Springer-Verlag, 331–343
|
| 91 |
Seo D C, Yu K W, DeLaune R D (2008). Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments. Chemosphere , 73(11): 1757–1764 doi: 10.1016/j.chemosphere.2008.09.003 pmid:18926554
|
| 92 |
Sheoran A S, Sheoran V (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng , 19(2): 105–116 doi: 10.1016/j.mineng.2005.08.006
|
| 93 |
Shi G, Chen Z, Bi C, Li Y, Teng J, Wang L, Xu S (2010). Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China. Environ Pollut , 158(3): 694–703 doi: 10.1016/j.envpol.2009.10.020 pmid:19926184
|
| 94 |
Shi X M, Wang J H (2009). Street surface dust heavy metal pollution state and assessment in Xianyang City. Progress in Geography , 28: 435–440 (In Chinese)
|
| 95 |
Shutes R B E (2001). Artificial wetlands and water quality improvement. Environ Int , 26(5–6): 441–447 doi: 10.1016/S0160-4120(01)00025-3 pmid:11392764
|
| 96 |
Singh S P, Tack F M, Verloo M G (1998). Heavy metal fractionation and extractability in dredged sediment derived surface soils. Water Air Soil Pollut , 102(3–4): 313–328 doi: 10.1023/A:1004916632457
|
| 97 |
Sobolewski A (1999). A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. Int J Phytoremediation , 1(1): 19–51 doi: 10.1080/15226519908500003
|
| 98 |
Sriyaraj K, Shutes R B E (2001). An assessment of the impact of motorway runoff on a pond, wetland and stream. Environ Int , 26(5–6): 433–439 doi: 10.1016/S0160-4120(01)00024-1 pmid:11392763
|
| 99 |
St-Cyr L, Campbell P G C (1996). Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry , 33(1): 45–76 doi: 10.1007/BF00000969
|
| 100 |
Stephens S R, Alloway B J, Parker A, Carter J E, Hodson M E (2001). Changes in the leachability of metals from dredged canal sediments during drying and oxidation. Environ Pollut , 114(3): 407–413 doi: 10.1016/S0269-7491(00)00231-1 pmid:11584639
|
| 101 |
Sundby B, Vale C, Cacador I, Catarino F, Madureira M J, Caetano M (1998). Metal-rich concretions on the roots of salt marsh plants: mechanism and rate of formation. Limnol Oceanogr , 43(2): 245–252 doi: 10.4319/lo.1998.43.2.0245
|
| 102 |
Taebi A, Droste R L (2004). Pollution loads in urban runoff and sanitary wastewater. Sci Total Environ , 327(1–3): 175–184 doi: 10.1016/j.scitotenv.2003.11.015 pmid:15172580
|
| 103 |
Tam N F Y, Wong Y S (1996). Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environ Pollut , 94(3): 283–291 doi: 10.1016/S0269-7491(96)00115-7 pmid:15093488
|
| 104 |
Terzakis S, Fountoulakis M S, Georgaki I, Albantakis D, Sabathianakis I, Karathanasis A D, Kalogerakis N, Manios T (2008). Constructed wetlands treating highway run off in the central Mediterrantan region. Chemo sphere , 72(2): 141–149 doi: 10.1016/S0925-8574(98)00116-5
|
| 105 |
Thurston K A (1999). Lead and petroleum hydrocarbon changes in an urban wetland receiving stormwater runoff. Ecol Eng , 12(3–4): 387–399
|
| 106 |
USEPA (1983). Results of the Nationwide Urban Runoff Program, Volume I–Final Report. NTIS PB84–185552. Washington D C: US Environmental Protection Agency
|
| 107 |
USEPA (1995). Economic Benefits Of Runoff Controls. Office of Wetlands, Oceans and Watersheds (4503F) , EPA 841-S-95–002. http://www.epa.gov/nps/runoff.html (accessed 10 Oct 2011)
|
| 108 |
USEPA (1996). National Water Quality Inventory: Report to Congress, EPA841-R-97–008, April 1998, ES-13
|
| 109 |
van den Berg G A, Gustav Loch J P, van der Heijdt L M, Zwolsman J J G (1999). Mobilisation of heavy metals in contaminated sediments in the river Meuse, The Netherlands. Water Air Soil Pollut , 116(3–4): 567–586 doi: 10.1023/A:1005146927718
|
| 110 |
Vermette S J, Irvine K N, Drake J J (1991). Temporal variability of the elemental composition in urban street dust. Environ Monit Assess , 18: 69–77
|
| 111 |
Walker D J, Hurl S (2002). The reduction of heavy metals in a stormwater wetland. Ecol Eng , 18(4): 407–414 doi: 10.1016/S0925-8574(01)00101-X
|
| 112 |
Wang B, Li T (2009). Buildup characteristics of roof pollutants in the Shanghai urban area, China. Journal of Zhejiang University-Science A , 10(9): 1374–1382 (in Chinese) doi: 10.1631/jzus.A0920019
|
| 113 |
Weis J S, Weis P (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int , 30(5): 685–700 doi: 10.1016/j.envint.2003.11.002 pmid:15051245
|
| 114 |
Wieβner A, Kappelmeyer U, Kuschk P, K?stner M (2005). Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland. Water Res , 39(1): 248–256 doi: 10.1016/j.watres.2004.08.032 pmid:15607183
|
| 115 |
Wilson D J, Chang E (2000). Bioturbation and the oxidation of sulfide in sediments. J Tenn Acad Sci , 75: 76–85
|
| 116 |
Windom H L, Byrd T, Smith R G, Huan F (1991). Inadequacy of NASQUAN data for assessing metal trends in the nation’s rivers. Environ Sci Technol , 25(6): 1137–1142 doi: 10.1021/es00018a019
|
| 117 |
Wu P, Zhou Y S (2009). Simultaneous removal of coexistent heavy metals from simulated urban stormwater using four sorbents: a porous iron sorbent and its mixtures with zeolite and crystal gravel. J Hazard Mater , 168(2–3): 674–680 doi: 10.1016/j.jhazmat.2009.02.093 pmid:19303211
|
| 118 |
Xu S P, Jaffé P R (2006). Effects of plants on the removal of hexavalent chromium in wetland sediments. J Environ Qual , 35(1): 334–341 doi: 10.2134/jeq2005.0181 pmid:16397109
|
| 119 |
Xu W H, Huang H, Wang A H, Xiong Z T, Wang Z Y (2006). Advance in studies on activation of heavy metal by root exudates and mechanism. Ecol Environ , 15: 184–189 (in Chinese)
|
| 120 |
Yao Z G, Gao P (2007). Heavy metal research in lacustrine sediment: a review. Chin J Oceanology Limnol , 25(4): 444–454 doi: 10.1007/s00343-007-0444-7
|
| 121 |
Yeh T Y (2008). Removal of metals in constructed wetlands. Pract Period Hazard Toxic Radioact Waste Manage , 12(2): 96–101 doi: 10.1061/(ASCE)1090-025X(2008)12:2(96)
|
| 122 |
Zhang M, Wang H (2009). Concentrations and chemical forms of potentially toxic metals in road-deposited sediments from different zones of Hangzhou, China. J Environ Sci , 21(5): 625–631 (in Chinese) doi: 10.1016/S1001-0742(08)62317-7 pmid:20108664
|
| 123 |
Zhou P, Huang J C, Li A W F, Wei S (1999). Heavy metal removal from wastewater in fluidized bed reactor. Water Res , 33(8): 1918–1924 doi: 10.1016/S0043-1354(98)00376-5
|
| 124 |
Zoppou C (2001). Review of urban storm water models. Environ Model Softw , 16(3): 195–231 doi: 10.1016/S1364-8152(00)00084-0
|
| 125 |
Zouboulis A I, Loukidou M X, Matis K A (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem , 39(8): 909–916 doi: 10.1016/S0032-9592(03)00200-0
|
| 126 |
Zoumis T, Schmidt A, Grigorova L, Calmano W (2001). Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ , 266(1–3): 195–202 doi: 10.1016/S0048-9697(00)00740-3 pmid:11258817
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|