Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2012, Vol. 6 Issue (1) : 109-114    https://doi.org/10.1007/s11707-012-0311-5
SHORT COMMUNICATION
Optimization of acid digestion conditions on the extraction of fatty acids from stalagmites
Canfa WANG1,2, Hongbin ZHANG2, Xianyu HUANG2, Junhua HUANG2, Shucheng XIE1()
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; 2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
 Download: PDF(113 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lipids in stalagmites have been shown the potential for the paleoclimate reconstruction. However, the low lipid content leads to the difficulty in gaining high resolution lipid record in stalagmites because large mass of samples are required. Previous studies have validated that the acid digestion can improve the yield of lipids, especially fatty acids (FAs) and 3-hydroxy fatty acids (3-OH-FAs). In order to obtain more content of FAs and 3-OH-FAs with limited stalagmite sample weight, we investigate here how the acid digestion conditions (HCl concentration, heating temperature and time duration) could affect the yields of FAs and 3-OH-FAs. Under different concentration of HCl, from 2.0 to 6.0 mol/L, the FAs keep the same step in content variation with 3-OH-FAs, and the highest yields of both two appeared under the 3 mol/L HCl. The content of 3-OH-FAs increases positively with the heating temperature from 80°C to 150°C, while FAs showed the highest content at 130°C. Both of FAs and 3-OH-FAs firstly increased to a high content and then decreased as the heating time duration varies from 1.0 to 4.0 h, with the highest yields of both two being at 3.0 h. Consequently, we suggest the optimized acid digestion condition is under 3 mol/L HCl, heating at 130°C for 3 h and 5 g of each stalagmite sample are sufficient for the lipid analysis.

Keywords stalagmite      lipids      acid digestion      optimization     
Corresponding Author(s): XIE Shucheng,Email:xiecug@163.com   
Issue Date: 05 March 2012
 Cite this article:   
Canfa WANG,Hongbin ZHANG,Xianyu HUANG, et al. Optimization of acid digestion conditions on the extraction of fatty acids from stalagmites[J]. Front Earth Sci, 2012, 6(1): 109-114.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-012-0311-5
https://academic.hep.com.cn/fesci/EN/Y2012/V6/I1/109
VariablesLevels
1st2nd3rd4th
HCl concentration/(mol·L–1)2.03.04.06.0
Heating temperature/°C80110130150
Heating time duration/h1.02.03.04.0
Tab.1  Acid digestion conditions set for optimizing extraction method
Acid digestion conditionsYields/(μg·g–1)
3-OH-FAsFAsTotal
HCl concentration/(mol·L–1)
2.02.08.110.1
3.02.517.119.6
4.01.96.18.0
6.01.34.76.0
Heating temperature/°C
800.53.64.1
1100.72.93.5
1300.95.16.0
1501.14.15.2
Heating time duration/h
1.00.42.02.4
2.00.85.56.3
3.01.75.87.5
4.01.34.76.0
Tab.2  The yields of FAs and 3-OH-FAs by different acid digestion conditions
Fig.1  / 74 mass chromatogram of FAs in a stalagmite sample
Fig.2  Mass spectrum of 3-OH C fatty acid as Me/TMS derivative
Fig.3  / 175 mass chromatogram of 3-OH-FAs in a stalagmite sample
1 Blyth A J, Asrat A, Baker A, Gulliver P, Leng M J, Genty D (2007). A new approach to detecting vegetation and land-use change using high-resolution lipid biomarker records in stalagmites. Quaternary Research , 68(3): 314–324
doi: 10.1016/j.yqres.2007.08.002
2 Blyth A J, Baker A, Collins M J, Penkman K E H, Gilmour M A, Moss J S, Genty D, Drysdale R N (2008). Molecular organic matter in speleothems and its potential as an environmental proxy. Quaternary Science Reviews , 27(9–10): 905–921
doi: 10.1016/j.quascirev.2008.02.002
3 Blyth A J, Farrimond P, Jones M (2006). An optimised method for the extraction and analysis of lipid biomarkers from stalagmites. Organic Geochemistry , 37(8): 882–890
doi: 10.1016/j.orggeochem.2006.05.003
4 Dyk M, Kock J, Botha A (1994). Hydroxy long-chain fatty acids in fungi. World Journal of Microbiology and Biotechnology , 10(5): 495–504
doi: 10.1007/BF00367653
5 Edlund A, Nichols P D, Roffey R, White D C (1985). Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. Journal of Lipid Research , 26(8): 982–988
pmid:4045322
6 Fairchild I J, Smith, C L, Baker A, Fuller L, Sp?tl C, Mattey D, McDermott F (2006). Modification and preservation of environmental signals in speleothems. Earth Science Reviews , 75: 105–153
7 Hellstrom J, McCulloch M, Stone J (1998). A detailed 31000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems. Quaternary Research , 50(2): 167–178
doi: 10.1006/qres.1998.1991
8 Henderson G M (2006). Caving in to new chronologies. Science , 313(5787): 620–622
doi: 10.1126/science.1128980
9 Hu C, Henderson G M, Huang J, Xie S, Sun Y, Johnson K R (2008). Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters , 266(3–4): 221–232
doi: 10.1016/j.epsl.2007.10.015
10 Huang X, Cui J, Pu Y, Huang J, Blyth A J (2008). Identifying “free” and “bound” lipid fractions in stalagmite samples: an example from Heshang Cave, southern China. Applied Geochemistry , 23(9): 2589–2595
doi: 10.1016/j.apgeochem.2008.05.008
11 Kaneda T (1967). Fatty acids in the genus Bacillus I. Iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species. Journal of Bacteriology , 93(3): 894–903
pmid:4960925
12 Kein?nen M M, Korhonen L K, Martikainen P J, Vartiainen T, Miettinen I T, Lehtola M J, Nenonen K, Pajunen H, Kontro M H (2003). Gas chromatographic-mass spectrometric detection of 2- and 3-hydroxy fatty acids as methyl esters from soil, sediment and biofilm. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Science , 783(2): 443–451
doi: 10.1016/S1570-0232(02)00713-4 pmid:12482487
13 Lawrence E R, Chen J, Wasserburg G (1987). 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500000 years. Earth and Planetary Science Letters , 81(2–3): 175–192
doi: 10.1016/0012-821X(87)90154-3
14 Lewis S C, Gagan M K, Ayliffe L K, Zhao J, Hantoro W S, Treble P C, Hellstrom, J C, LeGrande A N, Kelley M, Schmidt G A (2011). High-resolution stalagmite reconstructions of Australian-Indonesian monsoon rainfall variability during Heinrich stadial 3 and Greenland interstadial 4. Earth and Planetary Science Letters , 303(1–2):133–142
15 Li X, Wang C, Huang J, Hu C, Xie S (2011). Seasonal variation of fatty acids from drip water in Heshang Cave, Central China. Applied Geochemistry , 26(3): 341–347
doi: 10.1016/j.apgeochem.2010.12.007
16 Mendoza Y A, Gülacar F O, Buchs A (1987). Comparison of extraction techniques for bound carboxylic acids in recent sediments: 2. β-Hydroxyacids. Chemical geology , 62(3–4): 321–330
17 Mielniczuk Z, Mielniczuk E, Larsson L (1993). Gas chromatography-mass spectrometry methods for analysis of 2- and 3-hydroxylated fatty acids: application for endotoxin measurement. Journal of Microbiological Methods , 17(2): 91–102
doi: 10.1016/0167-7012(93)90002-Y
18 Pausata F S R, Battisti D S, Nisancioglu K H, Bitz C M (2011). Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience , 4(7): 474–480
doi: 10.1038/ngeo1169
19 Szponar B, Larsson L (2001). Use of mass spectrometry for characterising microbial communities in bioaerosols. Annals of Agricultural and Environmental Medicine , 8(2): 111–117
pmid:11748866
20 Volkman J K, Barrett S M, Blackburn S I (1999). Fatty acids and hydroxy fatty acids in three species of freshwater eustigmatophytes. Journal of Phycology , 35(5): 1005–1012
doi: 10.1046/j.1529-8817.1999.3551005.x
21 Wakeham S G (1999). Monocarboxylic, dicarboxylic and hydroxy acids released by sequential treatments of suspended particles and sediments of the Black Sea. Organic Geochemistry , 30(9): 1059–1074
doi: 10.1016/S0146-6380(99)00084-4
22 Wang Y, Liu X, Herzschuh U (2010). Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth Science Reviews , 103(3–4): 135–153
doi: 10.1016/j.earscirev.2010.09.004
23 Wollenweber H, Rietschel E T, Hofstad T, Weintraub A, Lindberg A (1980). Nature type of linkage, quantity and absolute configuration of (3-hydroxy) fatty acids in lipopolysaccharides from bacteroides fragilis NCTC 9343 and related strains. Journal of Bacteriology , 144(3): 898–903
24 Xie S, Chen F, Wang Z, Wang H, Gu Y, Huang Y (2003). Lipid distributions in loess-paleosol sequences from Northwest China. Organic Geochemistry , 34(8): 1071–1079
doi: 10.1016/S0146-6380(03)00083-4
25 Zhao J, Yu K, Feng Y (2009). High-precision 238U-234U-230Th disequilibrium dating of the recent past: a review. Quaternary Geochronology , 4(5): 423–433
doi: 10.1016/j.quageo.2009.01.012
[1] Shifa MA, Feng LIU, Chunlei MA, Xuemin OUYANG. Integrating logistic regression with ant colony optimization for smart urban growth modelling[J]. Front. Earth Sci., 2020, 14(1): 77-89.
[2] Xiaoping LIU, Shuli CHEN, Li ZHUO, Jun LI, Kangning HUANG. Multi-sensor image registration by combining local self-similarity matching and mutual information[J]. Front. Earth Sci., 2018, 12(4): 779-790.
[3] Hongjun SU, Shufang TIAN, Yue CAI, Yehua SHENG, Chen CHEN, Maryam NAJAFIAN. Optimized extreme learning machine for urban land cover classification using hyperspectral imagery[J]. Front. Earth Sci., 2017, 11(4): 765-773.
[4] C. DAI,W. SUN,Q. TAN,Y. LIU,W.T. LU,H.C. GUO. Risk management for sulfur dioxide abatement under multiple uncertainties[J]. Front. Earth Sci., 2016, 10(1): 87-107.
[5] Ran WANG,Yin LI,Qian TAN. A review of inexact optimization modeling and its application to integrated water resources management[J]. Front. Earth Sci., 2015, 9(1): 51-64.
[6] Shuai ZHANG,Fulu TAO,Runhe SHI. Modeling the rice phenology and production in China with SIMRIW: sensitivity analysis and parameter estimation[J]. Front. Earth Sci., 2014, 8(4): 505-511.
[7] Yan YE,Xiaomeng SONG,Jianyun ZHANG,Fanzhe KONG,Guangwen MA. Parameter identification and calibration of the Xin’anjiang model using the surrogate modeling approach[J]. Front. Earth Sci., 2014, 8(2): 264-281.
[8] Duan CHEN,Qiuwen CHEN,Ruonan LI,Koen BLANCKAERT,Desuo CAI. Ecologically-friendly operation scheme for the Jinping cascaded reservoirs in the Yalongjiang River, China[J]. Front. Earth Sci., 2014, 8(2): 282-290.
[9] Xi JI, Zhanming CHEN, Jinkai LI. Embodied energy consumption and carbon emissions evaluation for urban industrial structure optimization[J]. Front Earth Sci, 2014, 8(1): 32-43.
[10] Yanhong ZHENG, Shucheng XIE, Xiaomin LIU, Weijian ZHOU, Philip A. MEYERS, . n -alkanol ratios as proxies of paleovegetation and paleoclimate in a peat-lacustrine core in southern China since the last deglaciation[J]. Front. Earth Sci., 2009, 3(4): 445-451.
[11] Changqing YAO, Zhifeng YANG. Parameters optimization on DHSVM model based on a genetic algorithm[J]. Front Earth Sci Chin, 2009, 3(3): 374-380.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed