Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2012, Vol. 6 Issue (3) : 237-249    https://doi.org/10.1007/s11707-012-0312-4
RESEARCH ARTICLE
Changes of wetland landscape patterns in Dadu River catchment from 1985 to 2000, China
Laibin HUANG1, Junhong BAI1(), Denghua YAN2, Bin CHEN1, Rong XIAO1, Haifeng GAO1
1. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; 2. China Institute of Water Resources and Hydropower Research, Beijing 100044, China
 Download: PDF(5633 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the interpretation and vector processing of remote sensing images in 1985 and 2000, the spatial changes of wetland landscape patterns in Dadu River catchment in the last two decades were studied using spatial analysis method. Supported by Apack software, the indices of wetland landscape pattern were calculated, and the information entropy (IE) was also introduced to show the changes of wetland landscape information. Results showed that wetland landscape in this region was characteristic of patch-corridor-matrix configuration and dominantly consisted of natural wetlands. Landscape patterns changed a little with low fragment and showed concentrated distribution with partial scattered distribution during the period from 1985 to 2000. The values of patch density and convergence index kept stable, and the values of diversity, evenness indices and IE showed a slight decrease, while dominance and fractal dimension indices were increased. All types of wetland landscapes had higher adjacency probabilities with grassland landscape in 1985 and 2000, and there was extremely weak hydrological link and large spatial gap among river, glacier, reservoir and pond wetlands due to low adjacency matrix values. Since their cumulative contribution exceeded 81% through the PCA analysis, the agriculture activities would be the main driving force to the landscape changes during the past 15 years.

Keywords wetland landscape      spatial pattern      landscape indices      wetland management      Dadu River catchment     
Corresponding Author(s): BAI Junhong,Email:junhongbai@163.com   
Issue Date: 05 September 2012
 Cite this article:   
Laibin HUANG,Junhong BAI,Denghua YAN, et al. Changes of wetland landscape patterns in Dadu River catchment from 1985 to 2000, China[J]. Front Earth Sci, 2012, 6(3): 237-249.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-012-0312-4
https://academic.hep.com.cn/fesci/EN/Y2012/V6/I3/237
LandscapeFirst-order classificationSecond-order classificationThird-order classification
Local landscapeWetlandNatural wetlandRiver wetland
Lake wetland
Marsh wetland
Glacier wetland
Constructed wetlandReservoir and pond wetland
Non-wetlandWoodlands-
Grasslands-
Dry land-
Human habitat-
Other lands-
Tab.1  Classification of wetlands and non-wetlands in the Dadu River catchment
Fig.1  Landscape types in Dadu River catchment in 1985 and 2000
Fig.2  Indices of wetland landscape pattern at the class level in 1985 and 2000.
LW= lake wetland; RPW= reservoir and pond wetland; MW= marsh wetland; RW= river wetland; GW= glacier wetland; = Patch density; = Fractal dimension; = Internal habitat fragmentation index
Landscape typesSub-landscape typesAreas/hm2PTA*19852000
1985200019852000N*AAP*MAP*N*AAP*MAP*
Natural landscapeRiver wetland1880.162036.112.2212.3512156.68841.2913156.62841.29
Lake wetland1110.471022.357.226.208812.62155.978412.17155.97
Marsh wetland11475.6212503.5974.5975.8793123.391410.2291137.401410.22
Glacier wetland408.51408.512.662.482204.26360.682204.26360.68
Sub-total14874.7615970.5596.6896.9019576.281410.2219084.061410.22
Constructed landscapeReservoir and pond wetland510.12510.123.323.103215.94118.743215.941187.38
Total15384.8816480.67100.00100.00227222
Tab.2  Structures of wetland landscapes in 1985 and 2000
YearDiversity (H)Dominance (D)Evenness (E)Patch density (PD)Convergence (RC)Fractal dimension (FD)IE
19850.8570.7530.5320.0140.9941.4262.08
20000.8430.7660.5240.0140.9941.4282.06
Tab.3  Wetland landscape pattern indices at the landscape level in 1985 and 2000
TypesLakeRiverMarshGlacierReservoirand pondWoodlandGrasslandHuman habitatDry landOther landscapes
Lake60.4600.33008.3827.050.213.220.35
River080.450001.8217.73000
Marsh0.06083.29001.2913.880.050.281.15
Glacier00092.63007.37000
Reservoir and pond000078.801.4619.74000
Woodland0.0100.010090.309.3400.250.08
Grassland0.020.010.06004.4495.030.010.160.26
HumanHabitat0.4200001.9512.4877.187.920.05
Dry land0.1500.07006.738.940.3583.760.01
Other landscapes0.0100.13000.996.9300.0191.93
Tab.4  Adjacency matrix probabilities between wetlands and non-wetlands in 1985 (unit: %)
LakeRiverMarshGlacierReservoir and pondWoodlandGrasslandHumanhabitatDry landOther landscapes
Lake61.3100.29008.8625.320.193.710.31
River080.030001.4918.48000
Marsh0.06083.68001.1913.810.050.260.95
Glacier00092.63007.37000
Reservoir and pond000078.801.4619.74000
Woodland0.0200.010090.439.2200.250.06
Grassland0.020.010.07004.3795.120.010.150.25
Human habitat0.2100.28001.9912.5077.267.710.05
Dry land0.1900.07006.878.840.3683.650.01
Other landscapes0.0100.14000.887.9200.0191.04
Tab.5  Adjacency matrix probabilities between wetlands and non-wetlands in 2000 (unit: %)
Fig.3  Conversions between wetland and non-wetland landscapes from 1985 to 2000 ((a) lake wetland, (b) river wetland, (c) marsh wetland)
LandscapeLake wetlandRiver wetlandMarsh wetlandGlacier wetlandReservoir and pond wetland
Lake wetland1022.350.000.000.000.00
River wetland0.001880.160.000.000.00
Marsh wetland0.000.0011475.620.000.00
Glacier wetland0.000.000.00408.510.00
Reservoir and pond wetland0.000.000.000.00510.12
Tab.6  Transferring matrix among different wetland landscape types from 1985 to 2000 (unit: hm)
Landscape conversionWetland → wetlandWetland → non-wetlandNon-wetland → wetlandIncreased area
Changes in area/hm215296.7588.161183.911095.79
Area/total wetland area in 198599.43%0.57%7.70%7.12%
Area/total wetland area in 200092.82%0.54%7.18%6.65%
Tab.7  Changes in total area of wetland and non-wetland landscapes from 1985 to 2000
Landscape typesSub-landscape typesAreas/hm2N*piAjqiAj
19852000198520001985200019852000
Natural landscapeRiver wetland1880.162036.1121312.22%12.35%5.29%5.86%
Lake wetland1110.471022.3588847.22%6.20%38.77%37.84%
Marsh wetland11475.6212503.59939174.59%75.87%40.97%40.99%
Glacier wetland408.51408.51222.66%2.48%0.88%0.90%
Constructed landscapeReservoir and pond wetland510.12510.1232323.32%3.10%14.10%14.41%
Tab.8  Information probability of the wetland landscapes changes in Dadu River catchement
Fig.4  Spatial change in the centroid of marsh wetland landscape in Dadu River catchment during the period from 1985 to 2000
YearSocio-economic factorsNatural factors
TP/104AP/104AP:TP/%FOP/109 CNYAHP/109 CNYFIP/109 CNYNLS/104ACL/104hm2AI/104hm2GDP/104CNYAMP/mmAMT/°C
1989862.2734.885.20%2.7318.910.97225.96874.4490.17655065872.510.49
1990868.9744.385.70%3.0720.761.08237.8579.66479.954308551088.111.24
1992879.3746.984.90%3.4625.351.3235.44573.88309.15885835911.2710.62
1994892.4738.382.70%4.3742.031.96242.71570.67324.2211750084311.55
1996901748.982.10%5.2154.052.9256.46403328.32820800895.1710.83
1998901.3750.782.50%5.8132.020.92254.13400.02143.512486458990.3312.11
1999918.8757.782.50%6.5333.171.06260.12399.2143.3315801001043.9711.82
Tab.9  Driving forces of the wetland landscapes changes in Dadu River catchment
ComponentInitial eigenvaluesExtraction sums of squared loadingsRotation sums of squared loadings
Total% of varianceCumulative/%Total% of varianceCumulative/%Total% of varianceCumulative/%
17.11559.29659.2967.11559.29659.2966.63255.26555.265
22.60621.71381.0092.60621.71381.0092.75222.93478.199
31.50612.54793.5561.50612.54793.5561.84315.35893.556
40.6015.00798.564
50.1451.21199.774
60.0270.226100.000
74.229E–163.524E–15100.000
82.520E–162.100E–15100.000
91.147E–169.557E–16100.000
10-1.292E–17-1.077E–16100.000
11-4.185E–17-3.488E–16100.000
12-1.397E–16-1.164E–15100.000
Tab.10  Principal component analysis for driving factors of wetland landscape pattern
PC1PC2PC3
TP(x1)0.9720.187-0.034
AP(x2)-0.9600.0400.206
AP/TP(x3)0.9470.275-0.064
AHP(x4)0.9120.3400.193
FOP(x5)0.868-0.0680.239
FIP (x6)-0.856-0.312-0.328
NLS (x7)0.793-0.1750.232
ACL (x8)-0.778-0.5530.198
AI (x9)-0.0200.9910.018
GDP(x10)0.4220.905-0.041
AMP(x11)-0.0540.1040.974
AMT(x12)0.368-0.4230.742
Tab.11  Rotated component matrix of three principal components
1 álvarez-Rogel J, Jiménez-Cárceles F J, Roca M J, Ortiz R (2007). Changes in soils and vegetation in a Mediterranean coastal salt marsh impacted by human activities. Estuar Coast Shelf Sci , 73(3–4): 510–526
doi: 10.1016/j.ecss.2007.02.018
2 An N, Gao N, Liu C (2008). Wetland degradation in China: causes, evaluation, and protection measures. Chin J Ecol , 27(5): 821–828 (in Chinese)
3 Bai J H, Ouyang H, Yang Z F, Cui B S, Cui L J, Wang Q G (2005). Changes in wetland landscape pattern: a review. Progr Geogr , 24(4): 36–45 (in Chinese)
4 Bai J H, Ouyang H, Cui B S, Wang Q G, Chen H (2008). Changes in landscape pattern of alpine wetlands on the Zoige Plateau in the past four decades. Acta Ecol Sin , 28(5): 2245–2252
doi: 10.1016/S1872-2032(08)60046-3
5 Bennion H (1994). A diatom phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia , 275/276: 391–410
6 Brazner J C, Danz N P, Niemi G J, Regal R R, Trebitz A S, Howe R W, Hanowski J M, Johnson L B, Ciborowski J J H, Johnston C A, Reavie E D, Brady V J, Sgro G V (2007). Evaluation of geographic, geomorphic and human influences on Great Lakes wetland indicators: a multi-assemblage approach. Ecol Indic , 7(3): 610–635
doi: 10.1016/j.ecolind.2006.07.001
7 Brown M T(1989). A simulation model of hydrology and nutrient dynamics in wetlands. Comput Environ Urban Syst , 12(4): 221–237
doi: 10.1016/0198-9715(88)90029-4
8 Cabezas á, González E, Gallardo B, García M, González M, Comín F A (2008). Effects of hydrological connectivity on the substrate and understory structure of riparian wetlands in the Middle Ebro River (NE Spain): implications for restoration and management. Aquat Sci , 70(4): 361–376
doi: 10.1007/s00027-008-8059-4
9 Canziani G A, Ferrati R M, Rossi C, Ruiz-Moreno D (2006). The influence of climate and dam construction on the Ibera wetlands, Argentina. Reg Environ Change , 6(4): 181–191
doi: 10.1007/s10113-006-0018-9
10 Carranza M L, Acosta A C, Ricotta C (2007). Analyzing landscape diversity in time: the use of Rènyi’s generalized entropy function. Ecol Indic , 7(3): 505–510
doi: 10.1016/j.ecolind.2006.05.005
11 Chen L, Liu Y, Lü Y, Feng X, Fu B (2008). Pattern analysis in landscape ecology: progress challenges and outlook. Acta Ecol Sin , 28(11): 5521–5531
doi: 10.1016/S1872-2032(09)60011-1
12 Elliot S H (1968). IUCN ecology commission’s technical meeting in Turkey on wetlands conservation in Western Asia, October 1967. Biol Conserv , 1(1): 97–98
doi: 10.1016/0006-3207(68)90044-X
13 Forman R T T (1983). Corridors in a landscape: their eco-logical structure and function. Ecology , 2: 375–387
14 Gibbes C, Southworth J, Keys E (2009). Wetland conservation: change and fragmentation in Trinidad’s protected areas. Geoforum , 40(1): 91–104
doi: 10.1016/j.geoforum.2008.05.005
15 Good I J (1963). Maximum entropy for hypothesis formulation, especially for multidimensional contingency tables. Ann Math Stat , 34(3): 911–934
doi: 10.1214/aoms/1177704014
16 Hansson L A, Br?nmark C, Anders N P, ?bj?rnsson K (2005). Con?icting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshw Biol , 50(4): 705–714
doi: 10.1111/j.1365-2427.2005.01352.x
17 Herkert J R, Reinking D L, Wiedenfeld D A, Winter M, Zimmerman J L, Jensen W E, Finck E J, Koford R R, Wolfe D H, Sherrod S K, Jenkins M A, Faaborg J, Robinson S K (2003). Effects of prairie fragmentation on the nest success of breeding birds in the mid-continental United States. Conserv Biol , 17(2): 587–594
doi: 10.1046/j.1523-1739.2003.01418.x
18 Hodge I, McNally S (2000). Wetland restoration, collective action and the role of water management institutions. Ecol Econ , 35(1): 107–118
doi: 10.1016/S0921-8009(00)00171-3
19 Huang H J, Li F, Pang J Z (2005). Interaction Research of Land–Ocean Between Yellow Sea and Bohai. Beijing: Science Press, 61–64 (in Chinese)
20 Huang G Q (2000). Sichuan Statistical Yearbook. Beijing: Chinese Statistical Press, 101–196 (in Chinese)
21 Jaynes E T (1979). Where do we stand on maximum entropy? In: Levine R D, Tribus M, eds. The Maximum Entropy Formalism . Cambridge: MIT Press, 1–105
22 Johnson G D, Patil G P (1998). Quantitative multiresolution characterization of landscape patterns for assessing the status of ecosystem health in watershed management areas. EcoHealth , 4(3): 177–187
23 Keddy P A (1992). A pragmatic approach to functional ecology. Funct Ecol , 6(6): 621–626
doi: 10.2307/2389954
24 Kong C F, Xu K, Wu C L (2007). Research on the landscape change of Yeya Lake wetland based on remote sensing fusion. In: Conference on Remotely Sensed Data and Information. 2007, May, 25th–27th, Nanjing, China , 6752(2): 277–786
25 Kullback J (1959). Information Theory and Statistics. New York: John Wiley & Sons, 353–393
26 Li A, Deng W, Kong B, Song M, Feng W, Lu X, Lei G, Bai J (2010). A comparative analysis on spatial patterns and processes of three typical wetland ecosystems in 3H area, China. Procedia Environmental Sciences , 2: 315–332
doi: 10.1016/j.proenv.2010.10.037
27 Li H, Reynolds J F (1993). A new contagion index to quantify spatial patterns of landscapes. Landscape Ecol , 8(3): 155–162
doi: 10.1007/BF00125347
28 Li S, Wang G, Deng W, Hu Y, Hu W (2009). Influence of hydrology process on wetland landscape pattern: a case study in the Yellow River Delta. Ecol Eng , 35(12): 1719–1726
doi: 10.1016/j.ecoleng.2009.07.009
29 Li X, Jongman R H G, Hu Y, Bu R, Harms B, Bregt A K, He H S (2005). Relationship between landscape structure metrics and wetland nutrient retention function: a case study of Liaohe Delta, China. Ecol Indic , 5(4): 339–349
doi: 10.1016/j.ecolind.2005.03.007
30 Lin M L, Cao Y, Wang S (2008). Limitations of landscape pattern analysis based on landscape indices: a case study of Lizejian wetland in Yilan of Taiwan Province, China. Chin J Appl Ecol , 19(1): 139–143
31 Liu H Y, Li Z F (2006). Spatial gradients of wetland landscape and their influential factors in watershed. Acta Ecol Sin , 26(1): 213–220
32 Mikhailov V N, Kravtsova V I, Magritskii D V (2003). Hydrological and morphological processes in the Kura river delta. Water Res , 30(5): 495–508
doi: 10.1023/A:1025773029217
33 Mladenoff D J, Dezonia B (1997). APACK 2.0 User’s Guide. Department of Forest Ecology and Management, University of Wisconsin-Madison, Madison, USA
34 Montalto F A, Steenhuis T S, Parlange J Y (2006). The hydrology of Piermont Marsh, a reference for tidal marsh restoration in the Hudson river estuary, New York. J Hydrol (Amst) , 316(1–4): 108–128
doi: 10.1016/j.jhydrol.2005.03.043
35 Niedermeier A, Robinson J S (2009). Phosphorus dynamics in the ditch system of a restored peat wetland. Agric Ecosyst Environ , 131 (3–4): 161–169
doi: 10.1016/j.agee.2009.01.011
36 O’Connell M J (2003). Detecting, measuring and reversing changes to wetlands. Wetlands Ecol Manage , 11(6): 397–401
doi: 10.1023/B:WETL.0000007191.77103.53
37 O’Neill R V, Krummel J R, Gardner R H, Sugihara G, Jackson B, DeAngelist D L, Milne B T, Turner M G, Zygmunt B, Christensen S W, Dale V H, Graham R L (1988). Indices of landscape pattern. Landsc Ecol , 1(3): 153–162
doi: 10.1007/BF00162741
38 Pan D, Domon G, de Blois S, Bouchard A (1999). Temporal (1958–1993) and spatial patterns of land use changes in Haut-Saint-Laurent (Quebec, Canada) and their relation to landscape physical attributes. Landsc Ecol , 14(1): 35–52
doi: 10.1023/A:1008022028804
39 Qin P, Mitsch W J (2009). Wetland restoration and ecological engineering: international conference of wetland restoration and ecological engineering. Ecol Eng , 35(4): 437–441
doi: 10.1016/j.ecoleng.2008.12.001
40 Rènyi A (1970). Probability Theory. Amsterdam: North Holland Publishing Company , 646–660
41 Riitters K H, O’Neill R V, Hunsaker C T, Wickham J D, Yankee D H, Timmins S P, Jones K B, Jackson B L (1995). A factor analysis of landscape pattern and structure metrics. Landsc Ecol , 10(1): 23–39
doi: 10.1007/BF00158551
42 Sahagian D, Melack J (1998). Global Wetland Distribution and Functional Characterization: Trace Gases and the Hydrologic Cycle. IGBP GAIM Report No.2 , 40
43 Schumaker N H (1996). Using landscape indices to predict habitat connectivity. Ecology , 77(4): 1210–1225
doi: 10.2307/2265590
44 Serraa P, Pons X, Saur D (2008). Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Appl Geogr , 28(3): 189–209
doi: 10.1016/j.apgeog.2008.02.001
45 Shannon C E (1948). A mathematical theory of communication. Bell Syst Tech J , 27: 379–423 , 623–656
46 Sluiter R, de Jong S M (2007). Spatial patterns of Mediterranean land abandonment and related land cover transitions. Landscape Ecol , 22(4): 559–576
doi: 10.1007/s10980-006-9049-3
47 Tang X, Huang G (2003). Study on classification system for wetland types in China. For Res , 16: 531–539 (in Chinese)
48 Thibault P A, Zipperer W C (1994). Temporal changes of wetlands within an urbanizing agricultural landscape. Landsc Urban Plan , 28(2–3): 245–251
doi: 10.1016/0169-2046(94)90 011-6
49 Tischendorf L (2001). Can landscape indices predict ecological processes consistently? Landscape Ecol , 16(3): 235–254
doi: 10.1023/A:1011112719782
50 Turner B L II, Meyer W B (1998). Global land-use and land cover change: an overview. In: Meyer W B, Turner B L II, eds. Change in Land Use and Land Cover: A Global Perspective . Cambridge: Cambridge University Press, 1–12
51 Turner M G, Gardner R H (1991). Quantitative Methods in Landscape Ecology. New York: Springer-Verlag, 417–442
52 Valdemoro H I, Sánchez-Arcilla A, Jiménez J A (2007). Coastal dynamics and wetlands stability. The Ebro delta case. Hydrobiologia, 577(1): 17–29
doi: 10.1007/s10750-006-0414-7
53 Wang G, Zhang Y (2002). Impacts of reservoir project on hydrologial and ecologial environment of Xianghai wetlands. Resources Science , 24(3): 26–30 (in Chinese)
54 Wang H, Yan D H, Qin D Y (2008). Water Source Area of West Line of South-to-North Water Diversion Project–Water Cycle Simulation and Quantitative Assessment of Water Resources. Zhengzhou: Water Conservancy of Yellow River Press, 28–44 (in Chinese)
55 Wang X L, Bu R, Hu Y M, Xiao I (1996). Analysis on landscape fragment of Liaohe Delta wetlands. Chin J Appl Eco , 7(3): 299–304
56 Wang Z, Song K, Zhang B, Liu D, Ren C, Luo L, Yang T, Huang N, Hu L, Yang H, Liu Z (2009). Shrinkage and fragmentation of grasslands in the West Songnen Plain, China. Agric Ecosyst Environ , 129(1–3): 315–324
doi: 10.1016/j.agee.2008.10.009
57 With K A, King A W (1999). Dispersal success on fractal landscapes: a consequence of lacunarity thresholds. Landsc Ecol , 14(1): 73–82
doi: 10.1023/A:1008030215600
58 Xiao D N, Zhao Y, Sun Z W (1991). Changes in spatial pattern of west suburb landscape in Shenyang City. In: Xiao D N, ed. Landscape Ecology: Theory, Methods and Applications . Beijing: Chinese Forestry Press, 186–195 (in Chinese)
59 You L, Wood S (2005). Assessing the spatial distribution of crop areas using a cross-entropy method. Int J Appl Earth Observ Geoinform , 7(4): 310–323
doi: 10.1016/j.jag.2005.06.010
60 Yue T X, Liu J Y, J?rgensen S E, Ye Q H (2003). Landscape change detection of the newly created wetland in Yellow River Delta. Ecol Model , 164(1): 21–31
doi: 10.1016/S0304-3800(02)00391-5
61 Zhang X L, Cai H S, Ding S T, Huang S G (2008). Analysis on the landscape pattern changes of Poyang Lake wetlands and their driving force. J Anhui Agri Sci , 36(36): 16065–16070, 16078 (in Chinese)
[1] Jianwen WANG, Da ZHANG, Ying NAN, Zhifeng LIU, Dekang QI. Spatial patterns of net primary productivity and its driving forces: a multi-scale analysis in the transnational area of the Tumen River[J]. Front. Earth Sci., 2020, 14(1): 124-139.
[2] Junyong AI,Xiang SUN,Lan FENG,Yangfan LI,Xiaodong ZHU. Analyzing the spatial patterns and drivers of ecosystem services in rapidly urbanizing Taihu Lake Basin of China[J]. Front. Earth Sci., 2015, 9(3): 531-545.
[3] Qin NIE,Jianhua XU. Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area[J]. Front. Earth Sci., 2015, 9(2): 276-285.
[4] Xiangsheng YI, Yanyu YIN, Yaojie YUE. Temporal and spatial changes of residential land in the Yuyang desert region of northern Shaanxi Province in recent 20 years[J]. Front Earth Sci, 2012, 6(3): 250-260.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed