Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    0, Vol. Issue () : 373-382    https://doi.org/10.1007/s11707-012-0324-0
RESEARCH ARTICLE
Abundance and diversity of candidate division JS1- and Chloroflexi-related bacteria in cold seep sediments of the northern South China Sea
Yong ZHANG1,2, Xin SU1,2(), Fang CHEN3, Lu JIAO1,2, Hongchen JIANG4(), Hailiang DONG1,5, Guochun DING6
1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; 2. School of Ocean Sciences, China University of Geosciences, Beijing 100083, China; 3. Guangzhou Marine Geology Survey, Guangzhou 510075, China; 4. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; 5. Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA; 6. Julius Kühn-Institut (JKI)-Federal Research Centre for Cultivated Plants, Braunschweig 38104, Germany
 Download: PDF(359 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Candidate division JS1-and Chloroflexi-related bacteria are ubiquitous in various deep marine sediments worldwide, yet almost nothing is known about their abundance and diversity in cold seep sediments. Here, we investigated the abundance and diversity of JS1- and Chloroflexi-related bacteria in a cold seep marine sediment core collected from the northern South China Sea (SCS) with the employment of quantitative polymerase chain reaction (qPCR) and 16S rRNA gene phylogenetic analyses. The qPCR results showed that 16S rRNA gene copies per gram of sediments for the total bacteria and JS1- and Chloroflexi-related bacteria were at magnitudes of 108 and 106, respectively. The relative abundance of JS1- and Chloroflexi-related 16S rRNA genes to that of total bacteria was 0.07%–8.78% throughout the core. Phylogenetic analyses showed that the JS-1 related clone sequences were dominant throughout the core. Our study provided insights into abundance and diversity of JS1- and Chloroflexi-related bacteria in the northern SCS cold seep sediments.

Keywords candidate division JS1      Chloroflexi      cold seep sediments      South China Sea     
Corresponding Author(s): SU Xin,Email:xsu@cugb.edu.cn; JIANG Hongchen,Email:hongchen.jiang@gmail.com   
Issue Date: 05 December 2012
 Cite this article:   
Yong ZHANG,Xin SU,Fang CHEN, et al. Abundance and diversity of candidate division JS1- and Chloroflexi-related bacteria in cold seep sediments of the northern South China Sea[J]. Front Earth Sci, 0, (): 373-382.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-012-0324-0
https://academic.hep.com.cn/fesci/EN/Y0/V/I/373
Fig.1  Sampling site (?) of the cold seep gravity core from Haiyang 4 Area of the northern South China Sea
ConstituentMethodReferences
AmmoniumTitrationGrasshoff et al.(1999)
TOCLiu (1996)
Hydrogen sulphideSpectrophotometryGrasshoff et al. (1999)
Phosphate
Headspace methaneGas chromatographyNiew?hner et al. (1998)
Sulfate, chlorideIon chromatographyhttp://wwwodp.tamu.edu/publications/notes/tn15/f_chem3.html
Tab.1  Methods used for geochemical analyses
Sample number16S rRNA gene copies per gram of sediments
Total bacteria (107)Total JCa) (105)Total JC/Total bacteriab)/%
DSH1186.71 (±16.94)19.10 (±1.48)0.10 (±0.01)
DSH217.41 (±9.70)36.06 (±18.95)3.00 (±2.86)
DSH3728.80 (±25.40)6.08 (±1.25)0.08 (±0.00)
DSH469.09 (±11.75)5.26 (±2.09)0.07 (±0.03)
DSH53.82 (±2.62)4.71 (±2.03)2.32 (±2.31)
DSH64.34 (±3.41)3.68 (±2.53)2.21 (±3.00)
DSH72.49 (±1.29)0.75 (±0.11)0.41 (±0.25)
DSH80.84 (±0.20)7.25 (±1.41)8.78 (±3.11)
DSH92.16 (±0.11)4.02 (±4.02)1.87 (±2.16)
DSH101.20 (±0.10)1.72 (±0.07)1.57 (±0.19)
DSH112.53 (±0.93)15.60 (±8.88)7.14 (±5.84)
DSH123.17 (±1.46)1.24 (±0.33)0.49 (±0.31)
Tab.2  qPCR-based 16S rRNA gene abundances of total bacteria and JS1- and -related bacteria in cold seep sediments of the northern SCS
Sample numberDepth/ (cmbsf)SO42-/(mM)CH4/ (μM)H2S/ (μM)NH4+/(μM)HPO4-(μΜ)Cl-/(mM)TOC/%
DSH15-1029.12.0506.606.005550.51
DSH250-5528.22.32039.716.695510.51
DSH3100-10528.32.53040.676.695580.56
DSH4150-15528.72.61028.543.595560.65
DSH5200-20528.61.59045.824.915570.58
DSH6250-25528.61.77048.265.535560.79
DSH7300-30528.52.4914.8056.293.985540.61
DSH8350-35528.43.7417.2066.414.055540.61
DSH9400-40525.85.455.6092.156.315560.50
DSH10450-45521.48.081276.80100.4010.125540.55
DSH11500-50515.312.731824.00179.8016.195460.59
DSH12550-55512.620.341612.00203.1017.675490.56
Tab.3  Geochemical parameters of the sediment core
Fig.2  DNA copy numbers of the 16S rRNA genes of the total bacteria (●) and JS1- and -related bacteria (?) in the cold seep sediment core from the northern SCS
Clone libraryNumber of clone sequences
No. of total clone sequences obtainedJS1-related bacteriaAnaerolineae-related bacteriaOther bacteria
DSH15443 (80%)7 (13%)4 (7%)
DSH34723 (49%)6 (13%)18 (38%)
DSH54428 (64%)016 (36%)
DSH74724 (51%)2 (4%)21 (45%)
DSH95048 (98%)02 (4%)
DSH125352 (98%)01 (2%)
Tab.4  Clone library analyses of JS1- and -related bacteria in cold seep sediments from northern SCS
Fig.3  Neighbor-Joining tree showing the phylogenetic relationships of candidate division JS1 and -related bacteria 16S rRNA gene sequences cloned a cold seep sediment core from of the northern SCS. Sequences obtained in this study are marked in bold. One representative clone type within each phylotype is shown, and the number of clones within each phylotype is shown after the GenBank accession number. Bootstrap values of>50% (for 1000 iterations) are shown.
Environmental variablesTotal bacteriaa)Total JCb)OTU levelMajor group level
rPrPrPrP
CH4-0.1050.3340.1560.2100.4640.2060.0560.400
Cl--0.1360.1990.0040.4330.3700.2470.1040.400
HPO4--0.1580.1320.0840.2650.4540.2880.0340.400
H2S-0.0820.3290.1250.2330.5040.158-0.0020.600
NH4+0.1140.1840.1620.1590.5820.0560.1010.200
SO42--0.0900.3210.1220.2120.4820.1600.0580.400
TOC-0.1120.321-0.1510.251-0.4540.047-0.2580.400
Tab.5  Simple Mantel tests for similarity between biotic and environmental matrices in cold seep sediments from the northern SCS
1 Alain K, Holler T, Musat F, Elvert M, Treude T, Krüger M (2006). Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ Microbiol , 8(4): 574-590
doi: 10.1111/j.1462-2920.2005.00922.x pmid:16584470
2 Blazejak A, Schippers A (2010). High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol , 72(2): 198-207
doi: 10.1111/j.1574-6941.2010.00838.x pmid:20180854
3 Chen D F, Huang Y Y, Yuan X L, Cathles L M III (2005). Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the northeastern South China Sea. Mar Pet Geol , 22(5): 613-621
doi: 10.1016/j.marpetgeo.2005.05.002
4 Coolen M J L, Cypionka H, Sass A M, Sass H, Overmann J (2002). Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science , 296(5577): 2407-2410
doi: 10.1126/science.1071893 pmid:12089447
5 Grasshoff K, Kremling K, Ehrhardt M (1999). Methods of Seawater Analysis. Toronto: Wiley-VCH.
6 Huang Y Y, Suess E, Wu N Y (2008). Methane and Gas Hydrate Geology of the Northern South China Sea. In: Sino-German Cooperative SO-177 Cruise Report . Beijing: The Geological Publishing House (in Chinese)
7 Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell F S, Nealson K H, Horikoshi K, D’Hondt S, J?rgensen B B (2006). Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA , 103(8): 2815-2820
doi: 10.1073/pnas.0511033103 pmid:16477011
8 Inagaki F, Sakihama Y, Inoue A, Kato C, Horikoshi K (2002). Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiol , 4(5): 277-286
doi: 10.1046/j.1462-2920.2002.00294.x pmid:12030853
9 Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson K H, Horikoshi K (2003). Microbial communities associated with geological horizons in coastal subseafloor sediments from the sea of Okhotsk. Appl Environ Microbiol , 69(12): 7224-7235
doi: 10.1128/AEM.69.12.7224-7235.2003 pmid:14660370
10 Jiang H C, Dong H L, Deng S C, Yu B S, Huang Q Y, Wu Q L (2009). Response of archaeal community structure to environmental changes in lakes on the Tibetan Plateau, northwestern China. Geomicrobiol J , 26(4): 289-297
doi: 10.1080/01490450902892662
11 Kormas K A, Smith D C, Edgcomb V, Teske A (2003). Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol , 45(2): 115-125
doi: 10.1016/S0168-6496(03)00128-4 pmid:19719622
12 Li L, Kato C, Horikoshi K (1999). Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench. Mar Biotechnol (NY) , 1(4): 391-400
doi: 10.1007/PL00011793 pmid:10489418
13 Liu G S (1996). Soil Physical and Chemical Analysis and Description of Soil Profiles. Beijing: Standards Press of China (in Chinese)
14 Nadkarni M A, Martin F E, Jacques N A, Hunter N (2002). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology , 148(Pt 1): 257-266
pmid:11782518
15 Newberry C J, Webster G, Cragg B A, Parkes R J, Weightman A J, Fry J C (2004). Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol , 6(3): 274-287
doi: 10.1111/j.1462-2920.2004.00568.x pmid:14871211
16 Niemann H, L?sekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter E J, Schlüter M, Klages M, Foucher J P, Boetius A (2006). Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature , 443(7113): 854-858
doi: 10.1038/nature05227 pmid:17051217
17 Niew?hner C, Hensen C, Kasten S, Zabel M, Schulz H D (1998). Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochim Cosmochim Acta , 62(3): 455-464
doi: 10.1016/S0016-7037(98)00055-6
18 Orcutt B N, Joye S B, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A (2010). Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Res Part II Top Stud Oceanogr , 57(21-23): 2008-2021
doi: 10.1016/j.dsr2.2010.05.014
19 Parkes R J, Cragg B A, Wellsbury P (2000). Recent studies on bacterial populations and processes in marine sediments: a review. Hydrogeol J , 8(1): 11-28
doi: 10.1007/PL00010971
20 Phelps C D, Kerkhof L J, Young L Y (1998). Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol Ecol , 27(3): 269-279
doi: 10.1111/j.1574-6941.1998.tb00543.x
21 Rappé M S, Giovannoni S J (2003). The uncultured microbial majority. Annu Rev Microbiol , 57: 369-394
pmid:14527284
22 Reed D W, Fujita Y, Delwiche M E, Blackwelder D B, Sheridan P P, Uchida T, Colwell F S (2002). Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl Environ Microbiol , 68(8): 3759-3770
doi: 10.1128/AEM.68.8.3759-3770.2002 pmid:12147470
23 Rochelle P A, Cragg B A, Fry J C, Parkes R J, Weightman A J (1994). Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol Ecol , 15(1-2): 215-225
doi: 10.1111/j.1574-6941.1994.tb00245.x
24 Schloss P D, Handelsman J (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol , 71(3): 1501-1506
doi: 10.1128/?AEM.71.3.1501-1506.2005
25 Song H B, Geng J H, Wong H K, Zhang W S, Fang Y X, Hao T Y, Jiang W W (2001). A preliminary study of gas hydrates in the Dongsha region, northern South China Sea. Chin J Geophys , 44(5): 684-691 (in Chinese)
26 Su X, Chen F, Lu H F, Huang Y Y (2008). Micro-textures of methane seep carbonates from the northern South China Sea in correlation with fluid flow. Geoscience , 22(3): 376-381 (in Chinese)
27 Su X, Chen F, Wei S P, Zhang Y, Cheng S H, Lu Y H, Huang Y Y (2007). Preliminary study on the correlation between microbial abundance and methane concentration in sediments from cold seeps in the northern South China Sea. Geoscience , 21(1): 101-104 (in Chinese)
28 Suess E (2005). Sino-German Cooperative Project, South China Sea Continental Margin: Geological Methane Budget snd Environmental Effects of Methane Emissions and Gas Hydrates. In: RV SONNE Cruise Report SO177 . Kiel: IFM-GEOMAR.
29 Teske A, Hinrichs K U, Edgcomb V, de Vera Gomez A, Kysela D, Sylva S P, Sogin M L, Jannasch H W (2002). Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol , 68(4): 1994-2007
doi: 10.1128/AEM.68.4.1994-2007.2002 pmid:11916723
30 Teske A P (2006). Microbial communities of deep marine subsurface sediments: molecular and cultivation surveys. Geomicrobiol J , 23(6): 357-368
doi: 10.1080/01490450600875613
31 Webster G, Parkes R J, Cragg B A, Newberry C J, Weightman A J, Fry J C (2006a). Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol , 58(1): 65-85
doi: 10.1111/j.1574-6941.2006.00147.x pmid:16958909
32 Webster G, Parkes R J, Fry J C, Weightman A J (2004). Widespread occurrence of a novel division of bacteria identified by 16S rRNA gene sequences originally found in deep marine sediments. Appl Environ Microbiol , 70(9): 5708-5713
doi: 10.1128/AEM.70.9.5708-5713.2004 pmid:15345467
33 Webster G, Sass H, Cragg B A, Gorra R, Knab N J, Green C J, Mathes F, Fry J C, Weightman A J, Parkes R J (2011). Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under heterotrophic conditions. FEMS Microbiol Ecol , 77(2): 248-263
doi: 10.1111/j.1574-6941.2011.01109.x pmid:21477007
34 Webster G, Watt L C, Rinna J, Fry J C, Evershed R P, Parkes R J, Weightman A J (2006b). A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environ Microbiol , 8(9): 1575-1589
doi: 10.1111/j.1462-2920.2006.01048.x pmid:16913918
35 Webster G, Yarram L, Freese E, K?ster J, Sass H, Parkes R J, Weightman A J (2007). Distribution of candidate division JS1 and other Bacteria in tidal sediments of the German Wadden Sea using targeted 16S rRNA gene PCR-DGGE. FEMS Microbiol Ecol , 62(1): 78-89
doi: 10.1111/j.1574-6941.2007.00372.x pmid:17692095
36 Whitman W B, Coleman D C, Wiebe W J (1998). Prokaryotes: the unseen majority. Proc Natl Acad Sci USA , 95(12): 6578-6583
doi: 10.1073/pnas.95.12.6578 pmid:9618454
37 Yamada T, Sekiguchi Y (2009). Cultivation of uncultured chloroflexi subphyla: significance and ecophysiology of formerly uncultured chloroflexi ‘subphylum I’ with natural and biotechnological relevance. Microbes Environ , 24(3): 205-216
doi: 10.1264/jsme2.ME09151S pmid:21566375
[1] Yang DING, Zhigang YAO, Lingling ZHOU, Min BAO, Zhengchen ZANG. Numerical modeling of the seasonal circulation in the coastal ocean of the Northern South China Sea[J]. Front. Earth Sci., 2020, 14(1): 90-109.
[2] Chao FU, Xinghe YU, Xue FAN, Yulin HE, Jinqiang LIANG, Shunli LI. Classification of mass-transport complexes and distribution of gashydrate-bearing sediments in the northeastern continental slope of the South China Sea[J]. Front. Earth Sci., 2020, 14(1): 25-36.
[3] Xiaoyin TANG, Shuchun YANG, Shengbiao HU. Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth Basin, northern South China Sea[J]. Front. Earth Sci., 2018, 12(3): 532-544.
[4] Zheng WANG, Zhihua MAO, Junshi XIA, Peijun DU, Liangliang SHI, Haiqing HUANG, Tianyu WANG, Fang GONG, Qiankun ZHU. Data fusion in data scarce areas using a back-propagation artificial neural network model: a case study of the South China Sea[J]. Front. Earth Sci., 2018, 12(2): 280-298.
[5] Jiali CHEN, Pengju HU, Xing LI, Yang YANG, Jinming SONG, Xuegang LI, Huamao YUAN, Ning LI, Xiaoxia LÜ. Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas[J]. Front. Earth Sci., 2018, 12(1): 95-107.
[6] Xiaoyin TANG, Shuchun YANG, Junzhang ZHU, Zulie LONG, Guangzheng JIANG, Shaopeng HUANG, Shengbiao HU. Tectonic subsidence of the Zhu 1 Sub-basin in the Pearl River Mouth Basin, northern South China Sea[J]. Front. Earth Sci., 2017, 11(4): 729-739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed