Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    0, Vol. Issue () : 364-372    https://doi.org/10.1007/s11707-012-0332-0
RESEARCH ARTICLE
Estimating potential yield of wheat production in China based on cross-scale data-model fusion
Zhan TIAN1,2(), Honglin ZHONG1,2, Runhe SHI1, Laixiang SUN3, Günther FISCHER3, Zhuoran LIANG2
1. Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200062, China; 2. Shanghai Climate Center, Shanghai Meteorological Bureau, Shanghai 200030, China; 3. International Institute for Applied System Analysis, Laxenburg 2361, Austria
 Download: PDF(362 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The response of the agro-ecological system to the environment includes the response of individual crop’s physiologic process and the adaption of the crop community to the environment. Observation and simulation at the single scale level cannot fully explain the above process. It is necessary to develop cross-scale agro-ecological models and study the interaction of agro-ecological processes across different scales. In this research, two typical agro-ecological models, the Decision Support System for Agro-technology Transfer (DSSAT) model and the Agro-ecological Zone (AEZ) model, are employed, and a framework for effective cross-scale data-model fusion is proposed and illustrated. The national observed data from 36 different agricultural observation stations and historical weather stations (1962-1999) are employed to estimate average crop productivity. Comparison of the two models’ estimations are consistent, which would indicate the possibility ofcross-scale crop model fusion.

Keywords DSSAT model      AEZ model      data-model fusion      agro-ecological system     
Corresponding Author(s): TIAN Zhan,Email:tianz@climate.sh.cn   
Issue Date: 05 December 2012
 Cite this article:   
Zhan TIAN,Honglin ZHONG,Günther FISCHER, et al. Estimating potential yield of wheat production in China based on cross-scale data-model fusion[J]. Front Earth Sci, 0, (): 364-372.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-012-0332-0
https://academic.hep.com.cn/fesci/EN/Y0/V/I/364
CodeDefinition
P1DPhotoperiod response
P1VDays, optimum vernalizing temperature, required for vernalization
P5Grain filling (excluding lag) phase duration
G1Kernel number per unit canopy weight at anthesis
G2Standard kernel size under optimum conditions
G3Kernel filling rate during the linear grain filling stage and under optimum conditions
PHINTPhylochron interval between successive leaf tip appearances
Tab.1  Genetic coefficients of wheat for the DSSAT model ()
Fig.1  Reclassified cropping zone map of China based on observation stations. (a) denotes the original cropping zones, (b) denotes the reclassified cropping zones, and the blue points stand for the observation stations
Fig.2  Comparison between the observed and the GLUE-simulated results (27 winter wheat stations; 9 spring wheat stations) nationwide ((a) and (c) refer to the anthesis day, whereas (b) and (d) denote the maturity day), DOY refers to day of the year.
Wheat typeAnthesis dayMaturity dayYieldUnit wt. Grain
Winter wheatSlope0.9510.9430.9310.842
(S.E.)(0.011)(0.013)(0.056)(0.039)
Spring wheatSlope0.7460.7480.8880.913
(S. E.)(0.035)(0.033)(0.042)(0.038)
Tab.2  Linear regression of simulated . observed results, slope coefficients and standard errors
Wheat typeStationAnthesis DayMaturity DayYield
MCMCGLUEMCMCGLUEMCMCGLUE
Winter wheatAHHF46.52.4414.216.7
SpringwheatFJLH10.411.63.75.128.433.6
Tab.3  RAE comparison of wheat simulations using GLUE and MCMC
Fig.3  Average yields (1962 to 1990) on irrigated land, AEZ (a) and up-scaled DSSAT (b)
Fig.4  Average yields (1962 to 1990) on rain-fed land, AEZ (a) and up-scaled DSSAT (b)
1 Bannayan M, Crout N M J, Hoogenboom G (2003). Application of the CERES-Wheat model for within-season prediction of winter wheat yield in the United Kingdom. Agron J , 95(1): 114-125
doi: 10.2134/agronj2003.0114
2 Batjes N H (2009). Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use Manage , 25(2): 124-127
doi: 10.1111/j.1475-2743.2009.00202.x
3 Baumer O W, Rice J W (1988). Methods to predict soil input data for DRAINMOD. ASAE Paper No. 88-2564
4 Beven K, Binley A (1992). The future of distributed models: model calibration and uncertainty prediction. Hydrol Processes , 6(3): 279-298
doi: 10.1002/hyp.3360060305
5 Blasone R S, Vrugt J A, Madsen H, Rosbjerg D, Robinson B A, Zyvoloski G A (2008). Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling. Adv Water Resour , 31(4): 630-648
doi: 10.1016/j.advwatres.2007.12.003
6 Brooks S (1998). Markov chain Monte Carlo method and its application. Journal of the Royal Statistical Society (D),: The Statistician , 47(1): 69-100
doi: 10.1111/1467-9884.00117
7 Campbell E P, Fox D R, Bates B C (1999). A Bayesian Approach to parameter estimation and pooling in nonlinear flood event models. Water Resour Res , 35(1): 211-220
doi: 10.1029/1998WR900043
8 Dente L, Satalino G, Mattia F, Rinaldi M (2008). Assimilation of leaf area index derived from ASAR and MERIS data into CERES-Wheat model to map wheat yield. Remote Sens Environ , 112(4): 1395-1407
doi: 10.1016/j.rse.2007.05.023
9 Fang H L, Liang S L, Hoogenboom G, Teasdalec J, Cavigellic M (2008). Corn-yield estimation through assimilation of remotely sensed data into the CSM-CERES-Maize model. Int J Remote Sens , 29(10): 3011--3032
doi: 10.1080/01431160701408386
10 FAO/IIASA/ISRIC/ISSCAS/JRC (2009). Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria
11 Fischer G, Nachtergaele F, Prieler S, Velthuizenvan H T, Verelst L, Wiberg D (2008). GlobalAgro-ecological Zones Assessment for Agriculture(GAEZ 2008). IIASA, Laxenburg, Austriaand FAO, Rome, Italy
12 Gijsman A J, Jagtap S S, Jones J W (2002). Wading through a swampof completeconfusion: how to choose a method for estimating soilwater retentionparameters for crop models. Eur J Agron , 18(1-2): 75-105
13 Gijsman A J, Thornton P K, Hoogenboom G (2007). Using the WISE databaseto parameterizesoil inputs for crop simulation models. Comput Electron Agric , 56(2): 85-100
doi: 10.1016/j.compag.2007.01.001
14 Hastings W K (1970). Monte Carlo sampling methods using Markov chains andtheir applications. Biometrika , 57(1): 97-109
doi: 10.1093/biomet/57.1.97
15 He J, Jones J W, Graham W D, Dukes M D (2010). Influence of likelihoodfunctionchoice for estimating crop model parameters using the generalizedlikelihooduncertainty estimation method. Agric Syst , 103(5): 256-264
doi: 10.1016/j.agsy.2010.01.006
16 Heinemann A B, Hoogenboom G,de Faria R T (2002). Determination ofspatialwater requirements at county and regional levels using cropmodelsand GIS. Agric Water Manage , 52(3): 177-196
doi: 10.1016/S0378-3774(01)00137-8
17 Hunt L A, Pararajasingham S, Jones J W, Hoogenboom G, Imamura D T, Ogoshi R M (1993). GENCALC: software to facilitate theuse of crop modelsfor analyzing field experiments. AgronJ , 85(5): 1090-1094
doi: 10.2134/agronj1993.00021962008500050025x
18 Iizumi T, Yokozawa M, Nishimori M (2009). Parameter estimationand uncertaintyanalysis of a large-scale crop model for paddy rice:application ofa Bayesian approach. AgricMeteorol , 149(2): 333-348
doi: 10.1016/j.agrformet.2008.08.015
19 Jiang P, He Z, Kitchen N R, SudduthK A(2009). Bayesiananalysis ofwithin-field variability of corn yield using a spatialhierarchicalmodel. Precis Agric , 10(2): 111-127
doi: 10.1007/s11119-008-9070-4
20 Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J, Ritchie J T (2003). The DSSAT cropping system model. Eur J Agron , 18(3-4): 235-265
doi: 10.1016/S1161-0301(02)00107-7
21 Liang S L, Fang H L, Court G F, Teasdale J, Cavigelli M (2004). Estimation of crop yield at the regionalscale from MODIS observations. In: IGARSS2004, IEEE Cat . No. 04CH37612.
22 Lobell D B, Ortiz-Monasterio J I (2006). Evaluatingstrategies for improvedwater use in spring wheat with CERES. AgricWater Manage , 84(3): 249-258
doi: 10.1016/j.agwat.2006.02.007
23 Lobell D B, Ortiz-Monasterio J I, Asner G P, Matson P, Naylor R L, Falcon W P (2005). Analysis of wheat yield and climatic trendsin Mexico. Field Crops Res , 94(2-3): 250-256
doi: 10.1016/j.fcr.2005.01.007
24 Lunn D J, Thomas A, Best N, Spiegelhalter D (2000). WinBUGS-a Bayesian modelling framework: concepts,structure, and extensibility. Statisticsand Computing , 10(4): 325-337
25 Makowski D, Wallach D, Tremblay M (2002). Using a Bayesian approachto parameterestimation; comparison of the GLUE and MCMC methods. Agronomie , 22(2): 191-203
doi: 10.1051/agro:2002007
26 Pohlert T (2004). Use of empirical global radiation models for maize growth simulation. Agric Meteorol , 126(1-2): 47-58
doi: 10.1016/j.agrformet.2004.05.003
27 Prevot L, Chauki H, Troufleau D, Weiss M, Baret F, Brisson N (2003). Assimilating optical and radar data into the STICS crop model forwheat. Agronomie , 23(4): 297-303
doi: 10.1051/agro:2003003
28 Rawls W J, Brakensiek D L, Saxton K E (1982). Estimation of soilwaterproperties. Trans ASAE , 25(5): 1316-1320, 1328
29 Ritchie J T, Godwin D C, Singh U (1989). Soil and Water inputsfor IBSNAT cropmodels. In: DSSAT. IBSNATSymposium. PartI. Las Vegas, Nevada , 31-47
30 Seidl M S, Batchelor W D, Fallick J B, Paz J O (2001). GIS-cropmodel based decision supportsystem to evaluate corn and soybean prescriptions. Appl Eng Agric , 17(5): 721-728
31 Tao F L, Yokozawa M, Xu Y L, Hayashi Y, Zhang Z (2006). Climatechanges and trends in phenology andyields of field crops in China,1981-2000. Agric Meteorol , 138(1-4): 82-92
doi: 10.1016/j.agrformet.2006.03.014
32 Tao F L, Yokozawa M, Zhang Z (2009). Modelling the impactsof weather andclimate variability on crop productivity over a largearea: a new process-basedmodel development, optimization, and uncertaintiesanalysis. Agric Meteorol , 149(5): 831-850
doi: 10.1016/j.agrformet.2008.11.004
33 Thornton P K, Booltink H W G, Stoorvogel JJ (1997). A computerprogramfor geostatistical and spatial analysis of crop model outputs. Agron J , 89(4): 620-627
doi: 10.2134/agronj1997.00021962008900040014x
34 Timmermann C, Gerhards R, Khbauch W (2002). Analyse der Ertrags-und Unkrautverteilungin Ackerschlgen mit einem Geo-Informations-System(GIS). J Agron Crop Sci , 188(1): 34-42
doi: 10.1046/j.1439-037x.2002.00542.x
35 Timsina J, Humphreys E (2006). Performanceof CERES-Rice and CERES-Wheatmodels in rice-wheat systems: A review. Agric Syst , 90(1-3): 5-31
doi: 10.1016/j.agsy.2005.11.007
36 Xiong W, Conway D, Holman I, Lin E (2008). Evaluation of CERES-Wheat simulation of wheatproduction in China. Agron J , 100(6): 1720-1728
doi: 10.2134/agronj2008.0081
[1] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed