Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2013, Vol. 7 Issue (2) : 227-237    https://doi.org/10.1007/s11707-013-0354-2
RESEARCH ARTICLE
Combining BPANN and wavelet analysis to simulate hydro-climatic processes----a case study of the Kaidu River, North-west China
Jianhua XU1(), Yaning CHEN2, Weihong LI2, Paul Y. PENG3, Yang YANG1, Chu’nan SONG1, Chunmeng WEI1, Yulian HONG1
1. The Key Laboratory of GIScience of the Education Ministry of China, The Research Center for East-West Cooperation in China, East China Normal University, Shanghai 200241, China; 2. The Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; 3. Department of Community Health and Epidemiology, Queen’s University, Kingston, K7L 3N6, Canada
 Download: PDF(317 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Using the hydrological and meteorological data in the Kaidu River Basin during 1957–2008, we simulated the hydro-climatic process by back-propagation artificial neural network (BPANN) based on wavelet analysis (WA), and then compared the simulated results with those from a multiple linear regression (MLR). The results show that the variation of runoff responded to regional climate change. The annual runoff (AR) was mainly affected by annual average temperature (AAT) and annual precipitation (AP), which revealed different variation patterns at five time scales. At the time scale of 32-years, AR presented a monotonically increasing trend with the similar trend of AAT and AP. But at the 2-year, 4-year, 8-year, and 16-year time-scale, AR presented nonlinear variation with fluctuations of AAT and AP. Both MLR and BPANN successfully simulated the hydro-climatic process based on WA at each time scale, but the simulated effect from BPANN is better than that from MLR.

Keywords hydro-climatic process      Kaidu River      simulation      wavelet analysis (WA)      back-propagation artificial neural network (BPANN)      multiple linear regression (MLR)     
Corresponding Author(s): XU Jianhua,Email:jhxu@geo.ecnu.edu.cn   
Issue Date: 05 June 2013
 Cite this article:   
Jianhua XU,Yaning CHEN,Weihong LI, et al. Combining BPANN and wavelet analysis to simulate hydro-climatic processes----a case study of the Kaidu River, North-west China[J]. Front Earth Sci, 2013, 7(2): 227-237.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0354-2
https://academic.hep.com.cn/fesci/EN/Y2013/V7/I2/227
Fig.1  The location of the study area
Fig.2  Operation of a typical back-propagation artificial neural network
Fig.3  The back-propagation training process
Fig.4  Variation patterns of AAT and AP at different time scales
Time scaleNeuron number of the hidden layerInput variablesOutput variablesTransfer functionTrain functionBest epochAverage absolute errorAverage relative error
S14AAT, APARtansigtrainlm42.31636.65%
S24AAT, APARtansigtrainlm51.43354.25%
S34AAT, APARtansigtrainlm60.99052.85%
S44AAT, APARtansigtrainlm60.19380.57%
S54AAT, APARtansigtrainlm100.06170.18%
Tab.1  Basic parameters of the BPANN for hydro-climatic process at different time scales
Time scaleRegression equationR2FAverage absolute errorAverage relative error
S1AR = 2.251AAT + 0.036 AP + 34.4200.54128.9322.99978.41%
S2AR = 4.098AAT-0.002AP + 52.9210.74571.5841.99875.85%
S3AR = 2.922AAT + 0.048AP + 34.2630.917269.8770.97142.69%
S4AR = 5.644AAT + 0.010AP + 56.0360.9781066.7930.45011.26%
S5AR = 5.216AAT-0.009AP + 59.4900.99930814.0850.07790.22%
Tab.2  MLREs for hydro-climatic process at different time scales
Fig.5  Simulated results for AR by BPANN and MLR at the different time scales
Time scaleS1S2S3S4S5
MLRECoefficient of determination0.5410.5560.9160.9770.978
AIC143.347102.29624.869-63.774-248.01
BPANNCoefficient of determination0.7150.8560.9200.9980.999
AIC118.488272.5064622.28173-151.494-259.208
Tab.3  Comparison between BPANN and MLR model at different time scales
1 Anderson D R, Burnham K P, Thompson W L (2000). Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manage , 64(4): 912-923
doi: 10.2307/3803199
2 Banakar A, Azeem M F (2008). Artificial wavelet neuro-fuzzy model based on parallel wavelet network and neural network. Soft Comput , 12(8): 789-808
doi: 10.1007/s00500-007-0238-z
3 Bruce L M, Koger C H, Li J (2002). Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans Geosci Rem Sens , 40(10): 2331-2338
doi: 10.1109/TGRS.2002.804721
4 Burnham K P, Anderson D R (2002). Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach (2nd Edition). New York: Springer-Verlag
5 Cannon A J, McKendry I G (2002). A graphical sensitivity analysis for statistical climate models: Application to Indian monsoon rainfall prediction by artificial neural networks and multiple linear regression models. Int J Climatol , 22(13): 1687-1708
doi: 10.1002/joc.811
6 Chen J, Kumar P (2004). A modeling study of the ENSO influence on the terrestrial energy profile in North America. J Clim , 17(8): 1657-1670
doi: 10.1175/1520-0442(2004)017<1657:AMSOTE>2.0.CO;2
7 Chen Y N, Takeuchi K, Xu C C, Chen Y P, Xu Z X (2006). Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol Processes , 20(10): 2207-2216
doi: 10.1002/hyp.6200
8 Chen Y N, Xu C C, Hao X M, Li W H, Chen Y P, Zhu C G, Ye Z X (2009). Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat Int , 208(1-2): 53-61
doi: 10.1016/j.quaint.2008.11.011
9 Chen Y N, Xu Z X (2005). Plausible impact of global climate change on water resources in the Tarim River Basin. Sci China Ser D-Earth Science , 48(1): 65-73
doi: 10.1360/04yd0539
10 Chen Z S, Chen Y N, Li B F (2012). Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. Theor Appl Climatol ,
doi: 10.1007/s00704-012-0680-4
11 Chou C M (2007). Efficient nonlinear modeling of rainfall-runoff process using wavelet compression. J Hydrol (Amst) , 332(3-4): 442-455
doi: 10.1016/j.jhydrol.2006.07.015
12 Dorofki M, Elshafie A H, Jaafar O, Karim O A, Mastura S (2012). Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data. International Proceedings of Chemical, Biological and Environmental Engineering , 33: 39-44
13 Farge M (1992). Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech , 24(1): 395-458
doi: 10.1146/annurev.fl.24.010192.002143
14 Gan T Y (2000). Reducing vulnerability of water resources of Canadian Prairies to potential droughts and possible climate warming. Water Resour Manage , 14(2): 111-135
doi: 10.1023/A:1008195827031
15 Hao X M, Chen Y N, Xu C C, Li W H (2008). Impacts of climate change and human activities on the surface runoff in the Tarim River Basin over the last fifty years. Water Resour Manage , 22(9): 1159-1171
doi: 10.1007/s11269-007-9218-4
16 Hsu K, Gupta H V, Sorooshian S (1995). Artificial neural network modeling of the rainfall-runoff process. Water Resour Res , 31(10): 2517-2530
doi: 10.1029/95WR01955
17 Kermani B G, Schiffman S S, Nagle H G (2005). Performance of the Levenberg-Marquardt neural network training method in electronic nose applications. Sens Actuators B Chem , 110(1): 13-22
doi: 10.1016/j.snb.2005.01.008
18 Labat D (2005). Recent advances in wavelet analyses: Part 1. A review of concepts. J Hydrol (Amst) , 314(1-4): 275-288
doi: 10.1016/j.jhydrol.2005.04.003
19 Maier H R, Dandy G C (1998). The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environ Model Softw , 13(2): 193-209
doi: 10.1016/S1364-8152(98)00020-6
20 Mallat S G (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell , 11(7): 674-693
doi: 10.1109/34.192463
21 Moghadassi A R, Parvizian F, Hosseini S M, Fazlali A R (2009). A new approach for estimation of PVT properties of pure gases based on artificial neural network model. Braz J Chem Eng , 26(1): 199-206
doi: 10.1590/S0104-66322009000100019
22 Ramsey J B (1999). Regression over timescale decompositions: a sampling analysis of distributional properties. Econ Syst Res , 11(2): 163-184
doi: 10.1080/09535319900000012
23 Shao Q X, Wong H, Li M, Ip W C (2009). Streamflow forecasting using functional-coefficient time series model with periodic variation. J Hydrol (Amst) , 368(1-4): 88-95
doi: 10.1016/j.jhydrol.2009.01.029
24 Shi Y F, Shen Y P, Kang E S, Li D L, Ding Y J, Zhang G W, Hu R J (2007). Recent and future climate change in northwest china. Clim Change , 80(3-4): 379-393
doi: 10.1007/s10584-006-9121-7
25 Smith L C, Turcotte D L, Isacks B L (1998). Streamflow characterization and feature detection using a discrete wavelet transform. Hydrol Processes , 12(2): 233-249
doi: 10.1002/(SICI)1099-1085(199802)12:2<233::AID-HYP573>3.0.CO;2-3
26 Sun G M, Dong X Y, Xu G D (2006). Tumor tissue identification based on gene expression data using DWT feature extraction and PNN classifier. Neurocomputing , 69(4-6): 387-402
doi: 10.1016/j.neucom.2005.04.005
27 Tao H, Wang G Y, Shao C, Song Y D, Zhou S P (2007). Climate change and its effects on runoff at the headwater of Kaidu River. Journal of Glaciology and Geocryology , 29(3): 413-417 (in Chinese with English abstract)
28 Torrence C, Compo G P (1998). A practical guide to wavelet analysis. Bull Am Meteorol Soc , 79(1): 61-78
doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
29 Wang J, Li H, Hao X (2010). Responses of snowmelt runoff to climatic change in an inland river basin, northwestern China, over the past 50 years. Hydrol Earth Syst Sci , 14(10): 1979-1987
doi: 10.5194/hess-14-1979-2010
30 Xu J H (2002). Mathematical Methods in Contemporary Geography. Beijing: Higher Education Press (in Chinese)
31 Xu J H, Chen Y N, Ji M H, Lu F (2008b). Climate change and its effects on runoff of Kaidu River, Xinjiang, China: a multiple time-scale analysis. Chin Geogr Sci , 18(4): 331-339
doi: 10.1007/s11769-008-0331-y
32 Xu J H, Chen Y N, Li W H, Dong S (2008a). Long-term trend and fractal of annual runoff process in mainstream of Tarim River. Chin Geogr Sci , 18(1): 77-84
doi: 10.1007/s11769-008-0077-6
33 Xu J H, Chen Y N, Li W H, Ji M H, Dong S (2009a). The complex nonlinear systems with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River. J Geogr Sci , 19(1): 25-35
doi: 10.1007/s11442-009-0025-0
34 Xu J H, Chen Y N, Li W H, Ji M H, Dong S, Hong Y L (2009b). Wavelet analysis and nonparametric test for climate change in Tarim River Basin of Xinjiang during 1959-2006. Chin Geogr Sci , 19(4): 306-313
doi: 10.1007/s11769-009-0306-7
35 Xu J H, Chen Y N, Li W H, Nie Q, Hong Y L, Yang Y (2012). The nonlinear hydro-climatic process in the Yarkand River, northwestern China. Stochastic Environ Res Risk Assess ,
doi: 10.1007/s00477-012-0606-9
36 Xu J H, Chen Y N, Li W H, Yang Y, Hong Y L (2011b). An integrated statistical approach to identify the nonlinear trend of runoff in the Hotan River and its relation with climatic factors. Stochastic Environ Res Risk Assess , 25(2): 223-233
doi: 10.1007/s00477-010-0433-9
37 Xu J H, Chen Y N, Lu F, Li W H, Zhang L J, Hong Y L (2011a). The nonlinear trend of runoff and its response to climate change in the Aksu River, western China. Int J Climatol , 31(5): 687-695
doi: 10.1002/joc.2110
38 Xu J H, Li W H, Ji M H, Lu F, Dong S (2010). A comprehensive approach to characterization of the nonlinearity of runoff in the headwaters of the Tarim River, western China. Hydrol Processes , 24(2): 136-146
39 Xu J H, Lu Y, Su F L, Ai N S (2004). R/S and wavelet analysis on the evolutionary process of regional economic disparity in China during the past 50 years. Chin Geogr Sci , 14(3): 193-201
doi: 10.1007/s11769-003-0047-y
40 Zhang Q, Xu C Y, Tao H, Jiang T, Chen D (2010). Climate changes and their impacts on water resources in the arid regions: a case study of the Tarim River basin, China. Stochastic Environ Res Risk Assess , 24(3): 349-358
doi: 10.1007/s00477-009-0324-0
[1] Linan YUAN, Jingjuan LIAO. Exploring the influence of various factors on microwave radiation image simulation for Moon-based Earth observation[J]. Front. Earth Sci., 2020, 14(2): 430-445.
[2] Hongjie WANG, Yi ZHOU, Shixin WANG, Futao WANG. Coupled model constructed to simulate the landslide dam flood discharge: a case study of Baige landslide dam, Jinsha River[J]. Front. Earth Sci., 2020, 14(1): 63-76.
[3] Tong LI, Huadong GUO, Li ZHANG, Chenwei NIE, Jingjuan LIAO, Guang LIU. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Front. Earth Sci., 2020, 14(1): 236-250.
[4] Pingzhi FANG, Deqian ZHENG, Liang LI, Wenyong MA, Shengming TANG. Numerical and experimental study of the aerodynamic characteristics around two-dimensional terrain with different slope angles[J]. Front. Earth Sci., 2019, 13(4): 705-720.
[5] Xiaoting WANG, Zhan’e YIN, Xuan WANG, Pengfei TIAN, Yonghua HUANG. A study on flooding scenario simulation of future extreme precipitation in Shanghai[J]. Front. Earth Sci., 2018, 12(4): 834-845.
[6] Kazuyoshi SUZUKI, Milija ZUPANSKI. Uncertainty in solid precipitation and snow depth prediction for Siberia using the Noah and Noah-MP land surface models[J]. Front. Earth Sci., 2018, 12(4): 672-682.
[7] Zhixiong MEI, Hao WU, Shiyun LI. Simulating land-use changes by incorporating spatial autocorrelation and self-organization in CLUE-S modeling: a case study in Zengcheng District, Guangzhou, China[J]. Front. Earth Sci., 2018, 12(2): 299-310.
[8] Rui XING,Zhiying DING,Sangjie YOU,Haiming XU. Relationship of tropical-cyclone-induced remote precipitation with tropical cyclones and the subtropical high[J]. Front. Earth Sci., 2016, 10(3): 595-606.
[9] Shou MA,Jianchun GUO,Lianchong LI,Leslie George THAM,Yingjie XIA,Chun’an TANG. Influence of pore pressure on tensile fracture growth in rocks: a new explanation based on numerical testing[J]. Front. Earth Sci., 2015, 9(3): 412-426.
[10] Xinwen LI,Yongming SHEN. Numerical simulation of the impacts of water level variation on water age in Dahuofang Reservoir[J]. Front. Earth Sci., 2015, 9(2): 209-224.
[11] Shuai ZHANG,Fulu TAO,Runhe SHI. Modeling the rice phenology and production in China with SIMRIW: sensitivity analysis and parameter estimation[J]. Front. Earth Sci., 2014, 8(4): 505-511.
[12] Lianchong LI,Shaohua LI,Chun’an TANG. Fracture spacing behavior in layered rocks subjected to different driving forces: a numerical study based on fracture infilling process[J]. Front. Earth Sci., 2014, 8(4): 472-489.
[13] Da AN, Yonghai JIANG, Beidou XI, Zhifei MA, Yu YANG, Queping YANG, Mingxiao LI, Jinbao ZHANG, Shunguo BAI, Lei JIANG. Analysis for remedial alternatives of unregulated municipal solid waste landfills leachate-contaminated groundwater[J]. Front Earth Sci, 2013, 7(3): 310-319.
[14] Richard M. Males, Jeffrey A. Melby. Monte Carlo simulation model for economic evaluation of rubble mound breakwater protection in Harbors[J]. Front Earth Sci, 2011, 5(4): 432-441.
[15] Kyungjeen PARK, X. ZOU, Gang LI. A numerical study on rapid intensification of Hurricane Charley (2004) near landfall[J]. Front. Earth Sci., 2009, 3(4): 457-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed