|
|
|
Analysis of air quality variability in Shanghai using AOD and API data in the recent decade |
Qing ZHAO1,2( ), Wei GAO1,2,3, Weining XIANG4, Runhe SHI1,2, Chaoshun LIU1,2, Tianyong ZHAI1,2, Hung-lung Allen HUANG5, Liam E. GUMLEY5, Kathleen STRABALA5 |
| 1. Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200062, China; 2. Joint Laboratory for Environmental Remote Sensing and Data Assimilation, ECNU&CEODE, Colorado State University, Shanghai 200062, China; 3. Colorado State University, Natural Resource Ecology Laboratory, Fort Collins, Colorado 80521, USA; 4. Shanghai Key Laboratory for Urban Ecology and Sustainability, East China Normal University, Shanghai 200062, China; 5. University of Wisconsin–Madison, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Madison, Wisconsin 53706, USA |
|
|
|
|
Abstract We use the aerosol optical depth (AOD) measured by the moderate resolution imaging spectrometer (MODIS) onboard the Terra satellite, air pollution index (API) daily data measured by the Shanghai Environmental Monitoring Center (SEMC), and the ensemble empirical mode decomposition (EEMD) method to analyze the air quality variability in Shanghai in the recent decade. The results indicate that a trend with amplitude of 1.0 is a dominant component for the AOD variability in the recent decade. During the World Expo 2010, the average AOD level reduced 30% in comparison to the long-term trend. Two dominant annual components decreased 80% and 100%. This implies that the air quality in Shanghai was remarkably improved, and environmental initiatives and comprehensive actions for reducing air pollution are effective. AOD and API variability analysis results indicate that semi-annual and annual signals are dominant components implying that the monsoon weather is a dominant factor in modulating the AOD and API variability. The variability of AOD and API in selected districts located in both downtown and suburban areas shows similar trends; i.e., in 2000 the AOD began a monotonic increase, reached the maxima around 2006, then monotonically decreased to 2011 and from around 2006 the API started to decrease till 2011. This indicates that the air quality in the entire Shanghai area, whether urban or suburban areas, has remarkably been improved. The AOD improved degrees (IDS) in all the selected districts are (8.6±1.9)%, and API IDS are (9.2±7.1)%, ranging from a minimum value of 1.5% for Putuo District to a maximum value of 22% for Xuhui District.
|
| Keywords
air quality of Shanghai
MODIS AOD
API
EEMD method
World Expo 2010
|
|
Corresponding Author(s):
ZHAO Qing,Email:jennifer.zhao0510@gmail.com
|
|
Issue Date: 05 June 2013
|
|
| 1 |
Chan C K, Yao X (2008). Air pollution in mega cities in China. Atmos Environ , 42(1): 1–42 doi: 10.1016/j.atmosenv.2007.09.003
|
| 2 |
Chen B, Hong C, Kan H (2004). Exposures and health outcomes from outdoor air pollutants in China. Toxicology , 198(1–3): 291–300 doi: 10.1016/j.tox.2004.02.005 pmid:15138055
|
| 3 |
Chen C H, Wang B Y, Fu Q Y, Green C, Streets D G (2006). Reductions in emissions of local air pollutants and co-benefits of Chinese energy policy: a Shanghai case study. Energy Policy , 34(6): 754–762 doi: 10.1016/j.enpol.2004.07.007
|
| 4 |
Hao N, Valks P, Loyola D, Cheng Y F, Zimmer W (2011). Space-based measurements of air quality during the World Expo 2010 in Shanghai. Environ Res Lett , 6(4): 1–9 doi: 10.1088/1748-9326/6/4/044004
|
| 5 |
He Q, Li C, Tang X, Li H, Geng F, Wu Y (2010). Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China. Remote Sens Environ , 114(8): 1649–1661 doi: 10.1016/j.rse.2010.02.015
|
| 6 |
Hinds W C (1999). Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles. 2nd ed. New York: Wiley-Interscience, 504
|
| 7 |
Huang N E, Shen Z, Long S R, Wu M C, Shih E H, Zheng Q, Tung C C, Liu H H (1998). The Empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proceedings of Royal Society London , 454(1971): 903–995
|
| 8 |
Huang W, Tan J, Kan H, Zhao N, Song W, Song G, Chen G, Jiang L, Jiang C, Chen R, Chen B (2009). Visibility, air quality and daily mortality in Shanghai, China. Sci Total Environ , 407(10): 3295–3300 doi: 10.1016/j.scitotenv.2009.02.019 pmid:19275954
|
| 9 |
Hutchison K D, Smith S, Faruqui S (2004). The use of MODIS data and aerosol products for air quality prediction. Atmos Environ , 38(30): 5057–5070 doi: 10.1016/j.atmosenv.2004.06.032
|
| 10 |
Hutchison K D, Smith S, Faruqui S (2005). Correlation MODIS aerosol optical thickness data with ground-base PM2.5 observations across Texas for use in a real-time air quality prediction system. Atmos Environ , 39(37): 7190–7203 doi: 10.1016/j.atmosenv.2005.08.036
|
| 11 |
Jiang D, Zhang Y, Hu X, Zeng Y, Tan J, Shao D (2004). Progress in developing an ANN model for air pollution index forecast. Atmos Environ , 38(40): 7055–7064 doi: 10.1016/j.atmosenv.2003.10.066
|
| 12 |
Kan H, Chen B (2003a). A case-crossover analysis of air pollution and daily mortality in Shanghai. J Occup Health , 45(2): 119–124 doi: 10.1539/joh.45.119 pmid:14646303
|
| 13 |
Kan H, Chen B (2003b). Air pollution and daily mortality in Shanghai: a time-series study. Arch Environ Health , 58(6): 360–367 pmid:14992311
|
| 14 |
Kan H, Chen B (2004). Particulate air pollution in urban areas of Shanghai, China: health-based economic assessment. Sci Total Environ , 322(1–3): 71–79 doi: 10.1016/j.scitotenv.2003.09.010 pmid:15336892
|
| 15 |
Kan H, London S J, Chen G, Zhang Y, Song G, Zhao N, Jiang L, Chen B (2007). Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ Int , 33(3): 376–384 doi: 10.1016/j.envint.2006.12.001 pmid:17229464
|
| 16 |
Kaufman Y J, Tanré D, Boucher O (2002). A satellite view of aerosols in the climate system. Nature , 419(6903): 215–223 doi: 10.1038/nature01091 pmid:12226676
|
| 17 |
Levy R C, Leptoukh G G, Kahn R, Zubko V, Gopalan A, Remer L A (2009). A critical look at deriving monthly aerosol optical depth from satellite data. IEEE Trans Geosci Rem Sens , 47(8): 2942–2956 doi: 10.1109/TGRS.2009.2013842
|
| 18 |
Levy R C, Remer L A, Mattoo S, Vermote E F, Kaufman Y J (2007). Second-generation operation algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance. J Geophys Res , 112(D13): 1–21 doi: 10.1029/2006JD007811
|
| 19 |
Mage D, Ozolins G, Peterson P, Webster A, Orthofer R, Vandeweerd V, Gwynne M (1996). Urban air pollution in megacities of the world. Atmos Environ , 30(5): 681–686 doi: 10.1016/1352-2310(95)00219-7
|
| 20 |
Remer L A, Kaufman Y J, Tanre D, Mattoo S, Chu D A, Martins J V, Li R R, Ichoku C, Levy R C, Kleidman R G, Eck T F, Vermote E, Holben B N (2005). The MODIS aerosol algorithm products and validation. J Atmos Sci , 62(4): 947–973 doi: 10.1175/JAS3385.1
|
| 21 |
UNEP (United Nations Environment Programme) (2010). UNEP Environmental Assessment, EXPO 2010, Shanghai, China , 1–147
|
| 22 |
Wang J, Christopher S A (2003). Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: implications for air quality studies. Geophys Res Lett , 30(2095): 1–4
|
| 23 |
Wang J, Xu X, Spurr R, Wang Y, Drury E (2010). Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: implications for air quality monitoring in China. Remote Sens Environ , 114(11): 2575–2583 doi: 10.1016/j.rse.2010.05.034
|
| 24 |
Wang Y, Zhuang G, Zhang X, Huang K, Xu C, Tang A, Cheng J, An Z (2006). The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmos Environ , 40(16): 2935–2952 doi: 10.1016/j.atmosenv.2005.12.051
|
| 25 |
World Health Organization (WHO) (1987). Air Quality Guidelines for Europe. WHO Regional Publications, European Series No. 23, WHO Regional Office for Europe, Copenhagen
|
| 26 |
World Health Organization/United Nations Environment Programme (WHO/UNEP) (1992). Urban Air Pollution in Megacities of the World. Oxford: Blackwell
|
| 27 |
World Health Organization/United Nations Environment Programme (WHO/UNEP) (1994). Air Pollution in the World’s Megacities Environment, 36: 4–37
|
| 28 |
Wu Z, Huang N E (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis , 1(1): 1–41 doi: 10.1142/S1793536909000047
|
| 29 |
Zhang Y H, Huang W, London S J, Song G X, Chen G H, Jiang L L, Zhao N Q, Chen B H, Kan H D (2006). Ozone and daily mortality in Shanghai, China. Environ Health Perspect , 114(8): 1227–1232 doi: 10.1289/ehp.9014 pmid:16882530
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|