|
|
|
Cost of non-renewable energy in production of wood pellets in China |
Changbo WANG1, Lixiao ZHANG1( ), Jie LIU2 |
| 1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; 2. Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, China |
|
|
|
|
Abstract Assessing the extent to which all bio-fuels that are claimed to be renewable are in fact renewable is essential because producing such renewable fuels itself requires some amount of non-renewable energy (NE) and materials. Using hybrid life cycle analysis (LCA)—from raw material collection to delivery of pellets to end users—the energy cost of wood pellet production in China was estimated at 1.35 J/J, of which only 0.09 J was derived from NE, indicating that only 0.09 J of NE is required to deliver 1 J of renewable energy into society and showing that the process is truly renewable. Most of the NE was consumed during the conversion process (46.21%) and delivery of pellets to end users (40.69%), during which electricity and diesel are the two major forms of NE used, respectively. Sensitivity analysis showed that the distance over which the pellets are transported affects the cost of NE significantly. Therefore the location of the terminal market and the site where wood resources are available are crucial to saving diesel.
|
| Keywords
wood pellet
non-renewable energy (NE)
hybrid life cycle analysis (LCA)
bio-fuel
|
|
Corresponding Author(s):
ZHANG Lixiao,Email:zhanglixiao@bnu.edu.cn
|
|
Issue Date: 05 June 2013
|
|
| 1 |
Baral A, Bakshi B R (2010). Emergy analysis using US economic input-output models with application to life cycles of gasoline and corn ethanol. Ecological modeling , 221(15): 1807–1818
|
| 2 |
Bullard C W, Penner P S, Pilati D A (1978). Net energy analysis: handbook for combining process and input-output analysis. Resour Energy , 1(3): 267–313 doi: 10.1016/0165-0572(78)90008-7
|
| 3 |
Carpentieri M, Corti A, Lombardi L (2005). Life cycle assessment of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Energy Convers Manage , 46(11-12): 1790–1808 doi: 10.1016/j.enconman.2004.08.010
|
| 4 |
Chen G Q, Yang Q, Zhao Y H (2011a). Renewability of wind power in China: a case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi. Renew Sustain Energy Rev , 15(5): 2322–2329 doi: 10.1016/j.rser.2011.02.007
|
| 5 |
Chen G Q, Yang Q, Zhao Y H, Wang Z F (2011b). Nonrenewable energy cost and greenhouse gas emissions of a 1.5 MW solar power tower plant in China. Renew Sustain Energy Rev , 15(4): 1961–1967 doi: 10.1016/j.rser.2010.12.014
|
| 6 |
Fantozzi F, Buratti C (2010). Life cycle assessment of biomass chains: wood pellet from short rotation coppice using data measured on a real plant. Biomass Bioenergy , 34(12): 1796–1804 doi: 10.1016/j.biombioe.2010.07.011
|
| 7 |
Hendrickson C T, Lave L B, Matthews H S (2006). Environmental life cycle assessment of goods and services: an input-output approach. Washington: Resource for Future
|
| 8 |
Hondo H, Sakai S, Tanno S (2002). Sensitivity analysis of total CO2 emission intensities estimated using an input-output table. Appl Energy , 72(3-4): 689–704 doi: 10.1016/S0306-2619(02)00059-4
|
| 9 |
Hu Z Y, Fang F, Ben D F, Pu G Q, Wang C T (2004). Net energy, CO2 emission and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in China. Appl Energy , 78(3): 247–256 doi: 10.1016/j.apenergy.2003.09.003
|
| 10 |
Lave L B, Cobas-Flores E, Hendrickson C T, McMichael F C (1995). Using input-output analysis to estimate economy-wide discharges. Environ Sci Technol , 29(9): 420A–426A
|
| 11 |
Leng R, Wang C T, Zhang C, Dai D, Pu G Q (2008). Life cycle inventory and energy analysis of cassava-based fuel ethanol in China. J Clean Prod , 16(3): 374–384 doi: 10.1016/j.jclepro.2006.12.003
|
| 12 |
Lin C X, Yang S B, Chen J W, Wang Y, Zheng H B, Yang F L (2009). Hybrid life cycle analysis for coal versus straw briquettes. Acta Scientiae Circumstantiae , 29(11): 2451–2457 (in Chinese)
|
| 13 |
Liu S Y, Wang Y L, Bai B, Su C J, Yang G F, Zhang F (2011). Analysis on combustion kinetics of corn stalk briquetting densification fuel. Transactions of the CSAE , 27(9):287–292 (in Chinese)
|
| 14 |
Lu W, Zhang T Z (2010). Life-cycle implications of using crop residues for various energy demands in China. Environ Sci Technol , 44(10): 4026–4032 doi: 10.1021/es100157e pmid:20426437
|
| 15 |
Ma X Q, Zhang B L (2006). A study on the influence factors of straw briquette combustion velocity. Journal of Henan Agricultural University , 40(1): 77–82 (in Chinese)
|
| 16 |
Magelli F, Boucher K, Bi H T, Melin S, Bonoli A (2009). An environmental impact assessment of exported wood pellets from Canada to Europe. Biomass Bioenergy , 33(3): 434–441 doi: 10.1016/j.biombioe.2008.08.016
|
| 17 |
Nguyen T L T, Gheewala S H (2008). Fuel ethanol from cane molasses in Thailand: environmental and cost performance. Energy Policy , 36(5): 1589–1599 doi: 10.1016/j.enpol.2008.01.008
|
| 18 |
Ouyang S P, Hou S L, Zhao L X, Tian Y S, Meng H B (2011). The research progress in biomass annular mould forming for fuel technology. Renewable Energy Resources , 29(1): 14–22 (in Chinese)
|
| 19 |
Pa A, Bi X T, Sokhansanj S (2011). A life cycle evaluation of wood pellet gasification for district heating in British Columbia. Bioresour Technol , 102(10): 6167–6177 doi: 10.1016/j.biortech.2011.02.009 pmid:21377867
|
| 20 |
Sheng K C, Wu J (2004). Review on physical properties and forming mechanisms of biomass briquettes. Transactions of the CSAE , 20(2): 242–245 (in Chinese)
|
| 21 |
Sj?lie H K, Solberg B (2011). Greenhouse gas emission impacts of use of Norwegian wood pellets: a sensitivity analysis. Environ Sci Policy , 14(8): 1028–1040 doi: 10.1016/j.envsci.2011.07.011
|
| 22 |
Suh S, Lenzen M, Treloar G J, Hondo H, Horvath A, Huppes G, Jolliet O, Klann U, Krewitt W, Moriguchi Y, Munksgaard J, Norris G (2004). System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol , 38(3): 657–664 doi: 10.1021/es0263745 pmid:14968848
|
| 23 |
Uasuf A, Becker G (2011). Wood pellets production costs and energy consumption under different framework conditions in Northeast Argentina. Biomass Bioenergy , 35(3): 1357–1366 doi: 10.1016/j.biombioe.2010.12.029
|
| 24 |
Wang C B, Zhang L X, Yang S Y, Pang M Y (2012). A hybrid life cycle assessment of nonrenewable energy and greenhouse gas emissions of a village level biomass gasification project in China. Energies , 5(12): 2708–2723 doi: 10.3390/en5082708
|
| 25 |
Win K M, Persson T, Bales C (2012). Particles and gaseous emissions from realistic operation of residential wood pellet heating systems. Atmos Environ , 59: 320–327 doi: 10.1016/j.atmosenv.2012.05.016
|
| 26 |
Yang Q, Chen B, Ji X, He Y F, Chen G Q (2009). Exergetic evaluation of corn-ethanol production in China. Commun Nonlinear Sci Numer Simul , 14(5): 2450–2461 doi: 10.1016/j.cnsns.2007.08.011
|
| 27 |
Yang Q, Chen G Q (2012). Nonrenewable energy cost of corn-ethanol in China. Energy Policy , 40(2): 340–347 doi: 10.1016/j.enpol.2011.10.055
|
| 28 |
Zhai P, Williams E D (2010). Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems. Environ Sci Technol , 44(20): 7950–7955 doi: 10.1021/es1026695 pmid:20860380
|
| 29 |
Zhang G L, Zhang Z T, Sun Z B, Qu B X, Li C H, Xu C M (2011). Analysis of problems of biomass briquette production and application. Journal of Agricultural Mechanization Research , 33(8): 177–183 (in Chinese)
|
| 30 |
Zhang L X, Wang C B, Song B (2012). Carbon emission reduction potential of a typical household biogas system in rural China. J Clean Prod (in press) doi: 10.1016/j.jclepro.2012.06.021
|
| 31 |
Zhu J L, Wang Z W, Shi G X, Yang S H, He X F, Lei T Z (2010). Life cycle assessment of corn straw pellet fuel. Transactions of the CASE , 26(6):262–266 (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|