Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2013, Vol. 7 Issue (2) : 199-205    https://doi.org/10.1007/s11707-013-0358-y
RESEARCH ARTICLE
Cost of non-renewable energy in production of wood pellets in China
Changbo WANG1, Lixiao ZHANG1(), Jie LIU2
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; 2. Transport Planning and Research Institute, Ministry of Transport, Beijing 100028, China
 Download: PDF(179 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Assessing the extent to which all bio-fuels that are claimed to be renewable are in fact renewable is essential because producing such renewable fuels itself requires some amount of non-renewable energy (NE) and materials. Using hybrid life cycle analysis (LCA)—from raw material collection to delivery of pellets to end users—the energy cost of wood pellet production in China was estimated at 1.35 J/J, of which only 0.09 J was derived from NE, indicating that only 0.09 J of NE is required to deliver 1 J of renewable energy into society and showing that the process is truly renewable. Most of the NE was consumed during the conversion process (46.21%) and delivery of pellets to end users (40.69%), during which electricity and diesel are the two major forms of NE used, respectively. Sensitivity analysis showed that the distance over which the pellets are transported affects the cost of NE significantly. Therefore the location of the terminal market and the site where wood resources are available are crucial to saving diesel.

Keywords wood pellet      non-renewable energy (NE)      hybrid life cycle analysis (LCA)      bio-fuel     
Corresponding Author(s): ZHANG Lixiao,Email:zhanglixiao@bnu.edu.cn   
Issue Date: 05 June 2013
 Cite this article:   
Changbo WANG,Lixiao ZHANG,Jie LIU. Cost of non-renewable energy in production of wood pellets in China[J]. Front Earth Sci, 2013, 7(2): 199-205.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0358-y
https://academic.hep.com.cn/fesci/EN/Y2013/V7/I2/199
Fig.1  The flows of wood pellet’s production
Fig.2  Definition of the direct and indirect energy inputs
ComponentQuantityPer unit /CNYTotal/CNY
Woody materials0.49 t250.00121.33
Sawdust0.14 t360.0049.92
Rice husk0.69 t320.00221.85
Electricity54.85 kWh0.7541.13
Device18.23
Labor76.84
Diesel for transport10.93 L7.3580.33
Tab.1  Components of LCA of wood pellet production (to produce1ton of pellets)
ComponentsDirect NEIndirect NESubtotalsPercentage/%
Raw material collection3.78E+ 011.56E+ 021.93E+ 0213.1
Pulverizing4.17E+ 018.80E+ 011.30E+ 028.79
Filtering4.54E+ 015.71E+ 011.02E+ 026.94
Drying9.06E+ 011.54E+ 022.45E+ 0216.6
Pelleting1.47E+ 019.16E+ 011.06E+ 027.2
Packaging3.60E+ 016.27E+ 019.86E+ 016.68
Delivery to end users3.22E+ 022.79E+ 026.01E+ 0240.69
Total5.88E+ 028.88E+ 021.48E+ 03100
Tab.2  Cost (MJ/t) of NE in each stage of production of wood pellets
Fig.3  Share of different sources of NE at each stage of production of wood pellets
Component or stageLin et al. (2009)Zhu et al. (2010)Our study
DirectIndirect
Collection of raw material (J/J)3.76E-051.25E-032.26E-039.30E-03
Pelletization (J/J)4.67E-026.50E-021.37E-022.71E-02
Delivery to end users (J/J)1.80E-032.02E-031.92E-021.67E-02
Self-energy of 1 t of pellets (MJ)1.67E+ 041.68E+ 041.67E+ 041.67E+ 04
NE cost (J/J)4.85E-026.83E-023.51E-025.31E-02
Tab.3  Comparison of the costs of NE in the present study with those in two earlier studies
Fig.4  Sensitivity analysis: the cost of NE consumed in producing wood pellets
1 Baral A, Bakshi B R (2010). Emergy analysis using US economic input-output models with application to life cycles of gasoline and corn ethanol. Ecological modeling , 221(15): 1807–1818
2 Bullard C W, Penner P S, Pilati D A (1978). Net energy analysis: handbook for combining process and input-output analysis. Resour Energy , 1(3): 267–313
doi: 10.1016/0165-0572(78)90008-7
3 Carpentieri M, Corti A, Lombardi L (2005). Life cycle assessment of an integrated biomass gasification combined cycle (IBGCC) with CO2 removal. Energy Convers Manage , 46(11-12): 1790–1808
doi: 10.1016/j.enconman.2004.08.010
4 Chen G Q, Yang Q, Zhao Y H (2011a). Renewability of wind power in China: a case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi. Renew Sustain Energy Rev , 15(5): 2322–2329
doi: 10.1016/j.rser.2011.02.007
5 Chen G Q, Yang Q, Zhao Y H, Wang Z F (2011b). Nonrenewable energy cost and greenhouse gas emissions of a 1.5 MW solar power tower plant in China. Renew Sustain Energy Rev , 15(4): 1961–1967
doi: 10.1016/j.rser.2010.12.014
6 Fantozzi F, Buratti C (2010). Life cycle assessment of biomass chains: wood pellet from short rotation coppice using data measured on a real plant. Biomass Bioenergy , 34(12): 1796–1804
doi: 10.1016/j.biombioe.2010.07.011
7 Hendrickson C T, Lave L B, Matthews H S (2006). Environmental life cycle assessment of goods and services: an input-output approach. Washington: Resource for Future
8 Hondo H, Sakai S, Tanno S (2002). Sensitivity analysis of total CO2 emission intensities estimated using an input-output table. Appl Energy , 72(3-4): 689–704
doi: 10.1016/S0306-2619(02)00059-4
9 Hu Z Y, Fang F, Ben D F, Pu G Q, Wang C T (2004). Net energy, CO2 emission and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in China. Appl Energy , 78(3): 247–256
doi: 10.1016/j.apenergy.2003.09.003
10 Lave L B, Cobas-Flores E, Hendrickson C T, McMichael F C (1995). Using input-output analysis to estimate economy-wide discharges. Environ Sci Technol , 29(9): 420A–426A
11 Leng R, Wang C T, Zhang C, Dai D, Pu G Q (2008). Life cycle inventory and energy analysis of cassava-based fuel ethanol in China. J Clean Prod , 16(3): 374–384
doi: 10.1016/j.jclepro.2006.12.003
12 Lin C X, Yang S B, Chen J W, Wang Y, Zheng H B, Yang F L (2009). Hybrid life cycle analysis for coal versus straw briquettes. Acta Scientiae Circumstantiae , 29(11): 2451–2457 (in Chinese)
13 Liu S Y, Wang Y L, Bai B, Su C J, Yang G F, Zhang F (2011). Analysis on combustion kinetics of corn stalk briquetting densification fuel. Transactions of the CSAE , 27(9):287–292 (in Chinese)
14 Lu W, Zhang T Z (2010). Life-cycle implications of using crop residues for various energy demands in China. Environ Sci Technol , 44(10): 4026–4032
doi: 10.1021/es100157e pmid:20426437
15 Ma X Q, Zhang B L (2006). A study on the influence factors of straw briquette combustion velocity. Journal of Henan Agricultural University , 40(1): 77–82 (in Chinese)
16 Magelli F, Boucher K, Bi H T, Melin S, Bonoli A (2009). An environmental impact assessment of exported wood pellets from Canada to Europe. Biomass Bioenergy , 33(3): 434–441
doi: 10.1016/j.biombioe.2008.08.016
17 Nguyen T L T, Gheewala S H (2008). Fuel ethanol from cane molasses in Thailand: environmental and cost performance. Energy Policy , 36(5): 1589–1599
doi: 10.1016/j.enpol.2008.01.008
18 Ouyang S P, Hou S L, Zhao L X, Tian Y S, Meng H B (2011). The research progress in biomass annular mould forming for fuel technology. Renewable Energy Resources , 29(1): 14–22 (in Chinese)
19 Pa A, Bi X T, Sokhansanj S (2011). A life cycle evaluation of wood pellet gasification for district heating in British Columbia. Bioresour Technol , 102(10): 6167–6177
doi: 10.1016/j.biortech.2011.02.009 pmid:21377867
20 Sheng K C, Wu J (2004). Review on physical properties and forming mechanisms of biomass briquettes. Transactions of the CSAE , 20(2): 242–245 (in Chinese)
21 Sj?lie H K, Solberg B (2011). Greenhouse gas emission impacts of use of Norwegian wood pellets: a sensitivity analysis. Environ Sci Policy , 14(8): 1028–1040
doi: 10.1016/j.envsci.2011.07.011
22 Suh S, Lenzen M, Treloar G J, Hondo H, Horvath A, Huppes G, Jolliet O, Klann U, Krewitt W, Moriguchi Y, Munksgaard J, Norris G (2004). System boundary selection in life-cycle inventories using hybrid approaches. Environ Sci Technol , 38(3): 657–664
doi: 10.1021/es0263745 pmid:14968848
23 Uasuf A, Becker G (2011). Wood pellets production costs and energy consumption under different framework conditions in Northeast Argentina. Biomass Bioenergy , 35(3): 1357–1366
doi: 10.1016/j.biombioe.2010.12.029
24 Wang C B, Zhang L X, Yang S Y, Pang M Y (2012). A hybrid life cycle assessment of nonrenewable energy and greenhouse gas emissions of a village level biomass gasification project in China. Energies , 5(12): 2708–2723
doi: 10.3390/en5082708
25 Win K M, Persson T, Bales C (2012). Particles and gaseous emissions from realistic operation of residential wood pellet heating systems. Atmos Environ , 59: 320–327
doi: 10.1016/j.atmosenv.2012.05.016
26 Yang Q, Chen B, Ji X, He Y F, Chen G Q (2009). Exergetic evaluation of corn-ethanol production in China. Commun Nonlinear Sci Numer Simul , 14(5): 2450–2461
doi: 10.1016/j.cnsns.2007.08.011
27 Yang Q, Chen G Q (2012). Nonrenewable energy cost of corn-ethanol in China. Energy Policy , 40(2): 340–347
doi: 10.1016/j.enpol.2011.10.055
28 Zhai P, Williams E D (2010). Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems. Environ Sci Technol , 44(20): 7950–7955
doi: 10.1021/es1026695 pmid:20860380
29 Zhang G L, Zhang Z T, Sun Z B, Qu B X, Li C H, Xu C M (2011). Analysis of problems of biomass briquette production and application. Journal of Agricultural Mechanization Research , 33(8): 177–183 (in Chinese)
30 Zhang L X, Wang C B, Song B (2012). Carbon emission reduction potential of a typical household biogas system in rural China. J Clean Prod (in press)
doi: 10.1016/j.jclepro.2012.06.021
31 Zhu J L, Wang Z W, Shi G X, Yang S H, He X F, Lei T Z (2010). Life cycle assessment of corn straw pellet fuel. Transactions of the CASE , 26(6):262–266 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed