Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2014, Vol. 8 Issue (1) : 115-122    https://doi.org/10.1007/s11707-013-0364-0
RESEARCH ARTICLE
Transport of a volatile contaminant in a free-surface wetland flow
Jue YUAN1, Li ZENG1(), Yijun ZHAO1, Yihong WU1, Ping JI1, Bin CHEN2
1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; 2. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
 Download: PDF(190 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Presented in this paper is an analytical study of a pulsed volatile contaminant emission into a free-surface wetland flow. A simplified model is given for contaminant transport under the combined action of advection, mass dispersion, apparent reaction, and volatilization at the free water surface. The effect of periodic apparent reaction on contaminant transport is separated from the hydraulic effect via an extended transformation, with a limiting case covering the known transformation for constant apparent reaction rate. The analytical solutions of zeroth and first order concentration moments are rigorously derived and illustrated. It was found that the amount of contaminant decreases from the bottom bed to the free-surface under volatilization, and the total amount of contaminant decays with time. It was also found that the moving speed of the mass center of the whole contaminant cloud increases, as the ratio of volatilization coefficient to vertical effective mass dispersivity increases.

Keywords contaminant transport      volatilization      reaction      wetland hydraulics     
Corresponding Author(s): ZENG Li,Email:lizeng0914@163.com   
Issue Date: 05 March 2014
 Cite this article:   
Jue YUAN,Li ZENG,Yijun ZHAO, et al. Transport of a volatile contaminant in a free-surface wetland flow[J]. Front Earth Sci, 2014, 8(1): 115-122.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0364-0
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I1/115
Fig.1  Sketch for a free-surface wetland flow under volatilization.
Fig.2  Variation of Λwith for =1, and =0.1, 0.2, and 0.3.
Fig.3  Variation of Λwith for =1, and =0.1, 0.2, and 0.3.
Fig.4  Variation of Λ with for =1, and =0.1, 0.2, and 0.3.
Fig.5  Variation of Λ with τ for =0.2, and =0.5, 1, and 2.
Rsβ1β2β3β4β5
0.250.4800943.2190996.3227059.45122312.586231
0.50.6532713.2923116.3616219.47748612.606013
1.00.8603343.4256186.4372999.52933412.645287
2.01.0768743.6435976.5783349.62956012.722299
4.01.2645923.9351626.8140109.81187812.867756
Tab.1  Eigenvalues (=1, 2, 3, 4 and 5) for =0.25, 0.5, 1.0, 2.0, and 4.0
Fig.6  Variation of with for =0.1, and = 0.25, 0.5, 1.0, 2.0 and 4.0.
Fig.7  Variation of with for =1, and = 0.25, 0.5, 1.0, 2.0 and 4.0.
Fig.8  Variation of with for = 0.25, 0.5, 0.75, 1.0, and 2.0.
Fig.9  Variation of / with for, =1.0, =1.0 and = 0.25, 0.5, 1.0, 2.0 and 4.0.
Fig.10  Variation of with for, =1.0, and = 0.25, 0.5, 1.0, 2.0 and 4.0.
1 Aris R (1956). On the dispersion of a solute in a fluid flowing through a tube. P Roy Soc Lond A Mat 235(1200), 67-77
2 Barton N G (1983). On the method of moments for solute dispersion. J Fluid Mech , 126(1): 205-218
doi: 10.1017/S0022112083000117
3 Chen G Q, Wu Z, Zeng L (2012). Environmental dispersion in a two-layer wetland: analytical solution by method of concentration moments. Int J Eng Sci , 51: 272-291
doi: 10.1016/j.ijengsci.2011.09.009
4 Chen G Q, Zeng L, Wu Z (2010). An ecological risk assessment model for a pulsed contaminant emission into a wetland channel flow. Ecol Model , 221(24): 2927-2937
doi: 10.1016/j.ecolmodel.2010.08.018
5 Chen Z M, Chen G Q, Chen B, Zhou J B, Yang Z F, Zhou Y (2009). Net ecosystem services value of wetland: Environmental economic account. Commun Nonlinear Sci Numer Simul , 14(6): 2837-2843
doi: 10.1016/j.cnsns.2008.01.021
6 Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill R V, Paruelo J, Raskin R G, Sutton P, van den Belt M (1997). The value of the world’s ecosystem services and natural capital. Nature , 387(6630): 253-260
doi: 10.1038/387253a0
7 Fried J J (1975). Groundwater Pollution: Theory, Methodology, Modelling and Practical Rules. Amsterdam: Elsevier Scientific Publishing Company
8 Lightbody A F, Nepf H M (2006a). Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol Oceanogr , 51(1): 218-228
doi: 10.4319/lo.2006.51.1.0218
9 Lightbody A F, Nepf H M (2006b). Prediction of near-field shear dispersion in an emergent canopy with heterogeneous morphology. Environ Fluid Mech , 6(5): 477-488
doi: 10.1007/s10652-006-9002-7
10 Liu S, Masliyah J H (2005). Dispersion in porous media. In: Vafai K ed. Handbook of Porous Media . Boca Ratton: CRC Press, 81-140
11 Mei C C, Auriault J L, Ng C O (1996). Some applications of the homogenization theory. In: Hutchinson J W, Wu T Y eds. Advances in Applied Mechanics . California: Academic Press, 277-348
12 Mitsch W J, Gosselink J G (1993). Wetlands (2nd ed). New York: Van Nostrand Reinhold
13 Murphy E, Ghisalberti M, Nepf H (2007). Model and laboratory study of dispersion in flows with submerged vegetation. Water Resour Res , 43(5): W05438
doi: 10.1029/2006WR005229
14 Nepf H, Ghisalberti M, White B, Murphy E (2007). Retention time and dispersion associated with submerged aquatic canopies. Water Resour Res , 43(4): W04422
doi: 10.1029/2006WR005362
15 Shao L, Wu Z, Zeng L, Chen Z M, Zhou Y, Chen G Q (2012). Embodied energy assessment for ecological wastewater treatment by a constructed wetland. Ecol Model ,
doi: 10.1016/j.ecolmodel.2012.09.004
16 Taylor G (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. P Roy Soc Lond A Mat . 219(1137): 186-203
17 Wu Z, Chen G Q, Zeng L (2011a). Environmental dispersion in a two-zone wetland.Ecol Modell , 222(3): 456-474
doi: 10.1016/j.ecolmodel.2010.10.026
18 Wu Z, Li Z, Chen G Q (2011b). Multi-scale analysis for environmental dispersion in wetland flow. Commun Nonlinear Sci Numer Simul , 16(8): 3168-3178
doi: 10.1016/j.cnsns.2010.12.002
19 Wu Z, Zeng L, Chen G Q, Li Z, Shao L, Wang P, Jiang Z (2012). Environmental dispersion in a tidal flow through a depth-dominated wetland. Commun Nonlinear Sci Numer Simul , 17(12): 5007-5025
doi: 10.1016/j.cnsns.2012.04.006
20 Zeng L 2010. Analytical Study on Environmental Dispersion in Wetland Flow. Disseration for Ph D degree . Beijing: Peking University (in Chinese)
21 Zeng L, Chen G, Wu Z, Li Z, Wu Y H, Ji P (2012a). Flow distribution and environmental dispersivity in a tidal wetland channel of rectangular cross-section. Commun Nonlinear Sci Numer Simul , 17(11): 4192-4209
doi: 10.1016/j.cnsns.2012.03.002
22 Zeng L, Chen G Q (2011). Ecological degradation and hydraulic dispersion of contaminant in wetland. Ecol Modell , 222(2): 293-300
doi: 10.1016/j.ecolmodel.2009.10.024
23 Zeng L, Chen G Q, Tang H S, Wu Z (2011). Environmental dispersion in wetland flow. Commun Nonlinear Sci Numer Simul , 16(1): 206-215
doi: 10.1016/j.cnsns.2010.02.019
24 Zeng L, Wu Y, Ji P, Chen B, Zhao Y J, Chen G Q, Wu Z (2012b). Effect of wind on contaminant dispersion in a wetland flow dominated by free-surface effect. Ecol Modell , 237-238: 101-108
doi: 10.1016/j.ecolmodel.2012.04.020
[1] Carmine APOLLARO, Francesco PERRI, Emilia LE PERA, Ilaria FUOCO, Teresa CRITELLI. Chemical and minero-petrographical changes on granulite rocks affected by weathering processes[J]. Front. Earth Sci., 2019, 13(2): 247-261.
[2] Da AN, Yonghai JIANG, Beidou XI, Zhifei MA, Yu YANG, Queping YANG, Mingxiao LI, Jinbao ZHANG, Shunguo BAI, Lei JIANG. Analysis for remedial alternatives of unregulated municipal solid waste landfills leachate-contaminated groundwater[J]. Front Earth Sci, 2013, 7(3): 310-319.
[3] Weifang SHI, Weihua ZENG, Bin CHEN, . Application of Visual MODFLOW to assess the Sewage Plant accident pool leakage impact on groundwater in the Guanting Reservoir area of Beijing[J]. Front. Earth Sci., 2010, 4(3): 320-325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed