Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2013, Vol. 7 Issue (3) : 295-309    https://doi.org/10.1007/s11707-013-0365-z
RESEARCH ARTICLE
A geospatial web portal for sharing and analyzing greenhouse gas data derived from satellite remote sensing images
Hao LIN1, Bailang YU1(), Zuoqi CHEN1, Yingjie HU2, Yan HUANG1, Jianping WU1, Bin WU1, Rong GE1
1. Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; 2. Department of Geography, University of California Santa Barbara, Santa Barbara, CA 93106, USA
 Download: PDF(1097 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Greenhouse gas data collected by different institutions throughout the world have significant scientific values for global climate change studies. Due to the diversity of data formats and different specifications of data access interfaces, most of those data should be first downloaded onto a local machine before they can be used. To overcome this limitation, we present a geospatial web portal for sharing and analyzing greenhouse gas data derived from remote sensing images. As a proof-of-concept, a prototype has also been designed and implemented. The workflow of the web portal contains four processes: data access, data analysis, results visualization, and results output. A large volume of greenhouse gas data have been collected, described, and indexed in the portal, and a variety of data analysis services, such as calculating the temporal variation of regionally averaged column CO2 values and analyzing the latitudinal variations of globally averaged column CO2 values, are integrated into this portal. With the integrated geospatial data and services, researchers can collect and analyze greenhouse gas data online, and can preview and download the analysis results directly from the web portal. The geospatial web portal has been implemented as a web application, and we also used a study case to illustrate this framework.

Keywords greenhouse gas data      geospatial web portal      online spatial analysis     
Corresponding Author(s): YU Bailang,Email:blyu@geo.ecnu.edu.cn   
Issue Date: 05 September 2013
 Cite this article:   
Jianping WU,Bin WU,Rong GE, et al. A geospatial web portal for sharing and analyzing greenhouse gas data derived from satellite remote sensing images[J]. Front Earth Sci, 2013, 7(3): 295-309.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0365-z
https://academic.hep.com.cn/fesci/EN/Y2013/V7/I3/295
NamePlatform /InstrumentTime spanTemporal resolutionSpatial resolutionContentFormatQuantity
AIRS L2 CO2 SwathAqua/AIRS2002.9-2011.2About 12 h1° × 1°CO2HDF737338
AIRS L3 CO2 ProductAqua/AIRS2002.9-2011.2Daily, weekly, monthly2° × 2.5°CO2HDF3473
AIRS L2 CO2 GridAqua/AIRS2002.9-2011.2Daily, weekly, monthly1° × 1°CO2HDF3482
GOSAT L2 CO2GOSAT/TANSO-FTS2009.4-2011.23-day10.5 km × 10.5 kmCO2HDF59054
IASI L2 EPSMETOP/IASI2009.1-2010.12/25.0 km × 25.0 kmH2O, CO2, N2O, CH4, O3HDF52263
SCIAMACHY L2 XCO2ENVISAT-1 /SCIAMACHY2003.1-2009.12Monthly30.0 km × 60.0 kmCO2, CH4WAS84
SCIAMACHY L3 XCO2ENVISAT-1 /SCIAMACHY2003.1-2009.12Monthly0.5° × 0.5°CO2, CH4GRID84
FY-3A L2 O3FY3A/TOU2009.7-2011.12Daily0.5° × 0.5°O3HDF903
OMTO3e L3 O3Aura/OMI2004.10-2011.12Daily0.25° × 0.25°O3HE51354
OMI_DOAS L3 O3Aura/OMI2004.10-2011.12Daily0.25° × 0.25°O3HE52819
Tab.1  List of greenhouse gas data available in the spatial web portal
Fig.1  The architecture of the framework.
Fig.2  Functional modules of the portal.
Fig.3  Data set list of the portal (a) simplified information, (b) metadata in details.
Fig.4  Data retrieval (a) options selection (b) spatial retrieval (c) result list.
Fig.5  Results visualization (a) Line chart (b) Grid map
Fig.6  Seasonal variation of total columnar CO values derived from AIRS and SCIAMACHY covering Dec 2004-Nov 2006. (a) Data access (according method of choice), (b) online analysis (according method of choice), (c) data visualization
Fig.7  Data output and download. (a) in Txt file, (b) in Excel
1 AGU (1995). Water Vapor in the Climate System Special Report. Washington, D C: American Geophysical Union Publications Office
2 Alkhaled A A, Michalak A M, Kawa S R, Olsen S C, Wang J W (2008). A global evaluation of the regional spatial variability of column integrated CO2 distributions. J Geophys Res, D, Atmospheres , 113(D20): D20303
doi: 10.1029/2007JD009693
3 Aumann H H, Chahine M T, Gautier C, Goldberg M D, Kalnay E, McMillin L M, Revercomb H, Rosenkranz P W, Smith W L, Staelin D H, Strow L L, Susskind J (2003). AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Rem Sens , 41(2): 253--264
doi: 10.1109/TGRS.2002.808356
4 Bai W G, Zhang X Y, Zhang P (2010). Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations. Chin Sci Bull , 55(31): 3612-3618
doi: 10.1007/s11434-010-4182-4
5 Barkley M P, Monks P S, Engelen R J (2006). Comparison of SCIAMACHY and AIRS CO2 measurements over North America during the summer and autumn of 2003. Geophys Res Lett , 33(20): L20805
doi: 10.1029/2006GL026807 pmid:19122778
6 Blond N, Boersma K F, Eskes H J, van der A R J, van Roozendael M, de Smedt I, Bergametti G, Vautard R (2007). Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe. J Geophys Res, D, Atmospheres , 112(D10): D10311
doi: 10.1029/2006JD007277
7 Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noel S, Rozanov V V, Chance K V, Goede A P H (1999). SCIAMACHY: mission objectives and measurement modes. J Atmos Sci , 56(2): 127-150
doi: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
8 Goodchild M F, Zhou J Y (2003). Finding geographic information: collection-level metadata. GeoInformatica , 7(2): 95-112
doi: 10.1023/A:1023451824100
9 IPCC (2001). 6.3 Well-mixed Greenhouse Gases. Working Group I: The Scientific Basis IPCC Third Assessment Report-Climate Change 2001, Retrieved 2012, from http://www.grida.no/publications/other/ ipcc_tar/?src=/climate/ipcc_tar/wg1/218.htm
10 Jacob D (1999). Introduction to Atmospheric Chemistry. New Jersey: Princeton University Press
11 Karl T R, Trenberth K E (2003). Modern global climate change. Science , 302(5651): 1719-1723
doi: 10.1126/science.1090228 pmid:14657489
12 Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T, Prather M (2007). Historical Overview of Climate Change Science. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L, eds. Climate Change 2007: The Physical Science Basis . Cambridge: Cambridge University Press
13 Longley P A, Maguire D J (2005). Geoportals. Comput Environ Urban Syst , 29(1): 1
14 Nativi S, Domenico B (2009). Enabling interoperability for Digital Earth: Earth Science coverage access services. International Journal of Digital Earth 2(Suppl 1): 79-104
15 Strow L L, Hannon S E, de Souza-Machado S, Motteler H E, Tobin D (2003). An overview of the AIRS radiative transfer model. IEEE Trans Geosci Rem Sens , 41(2): 303-313
doi: 10.1109/TGRS.2002.808244
16 Tait M G (2005). Implementing geoportals: applications of distributed GIS. Comput Environ Urban Syst , 29(1): 33-47
17 Titov A, Gordov E, Okladnikov I, Shulgina T (2009). Web-system for processing and visualization of meteorological data for Siberian environment research. International Journal of Digital Earth , 2(Suppl 1): 105-119
doi: 10.1080/17538940902866187
18 van der Wel F J M (2005). Spatial data infrastructure for meteorological and climatic data. Meteorol Appl , 12(1): 7-8
doi: 10.1017/S1350482704001471
19 Wang K, Jiang H, Zhang X Y, Zhou G M (2011). Analysis of spatial and temporal variations of carbon dioxide over China using SCIAMACHY satellite observations during 2003-2005. Int J Remote Sens , 32(3): 815-832
doi: 10.1080/01431161.2010.517805
20 Woolf A, Cramer R, Gutierrez M, van Dam K K, Kondapalli S, Latham S, Lawrence B, Lowry R, O’Neill K (2005). Standards-based data interoperability in the climate sciences. Meteorol Appl , 12(1): 9-22
doi: 10.1017/S1350482705001556
21 Woolf A, Haines K, Liu C L (2003). A web service model for climate data access on the grid. Int J High Perform Comput Appl , 17(3): 281-295
doi: 10.1177/1094342003173002
22 Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S (2009). Global Concentrations of CO2 and CH4 Retrieved from GOSAT: first preliminary results. SOLA , 5: 160-163
doi: 10.2151/sola.2009-041
23 Zhang L, Dong C H, Zhang W J, Zhang P (2008). METOP-on-board super-high spectrum resolution infrared atmospheric sounding interferometer (IASI). Meteorological Science and Technology , 36(5): 639-642 (in Chinese)
24 Zhang X Y, Jiang H, Wang Y Q, Han Y, Buchwitz M, Schneising O, Burrows J P (2011). Spatial variations of atmospheric methane concentrations in China. Int J Remote Sens , 32(3): 833-847
doi: 10.1080/01431161.2010.517804
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed