Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2013, Vol. 7 Issue (3) : 384-394    https://doi.org/10.1007/s11707-013-0382-y
RESEARCH ARTICLE
Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China
Asma AYARI, Huan YANG, Shucheng XIE()
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
 Download: PDF(534 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) lipids were studied in flooded and non-flooded paddy soil in Wuhan, central China, to examine the response of the GDGTs distribution to the soil flooding. Samples were collected before and after the soil flooding in four specific months. Both core (CL) and intact polar (IPL) GDGTs were quantified. Increase in the abundance of archaeol and caldarchaeol may be indicative of the occurrence of methanogens in the flooded soil. A negative correlation was observed between the ratio of IPL branched GDGT-IIa to GDGT-Ia and the soil pH. The rise of the soil pH in the acid soil is known to be controlled by the redox conditions resulting from flooding. Thus, the branched GDGTs distribution may be controlled by the water content in the paddy soil. In addition, we suggest that the anoxic conditions resulting from flooding may also control the abundance of branched GDGTs relative to crenarchaeol, which in turn results in the increase of branched and isoprenoidal tetraethers (BIT) values, the index for the terrestrial input to the marine sediments.

Keywords glycerol dialkyl glycerol tetraethers (GDGTs)      soil flooding      soil pH      redox conditions      GDGTs distribution      branched and isoprenoidal tetraethers (BIT)     
Corresponding Author(s): XIE Shucheng,Email:xiecug@163.com   
Issue Date: 05 September 2013
 Cite this article:   
Huan YANG,Shucheng XIE,Asma AYARI. Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China[J]. Front Earth Sci, 2013, 7(3): 384-394.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0382-y
https://academic.hep.com.cn/fesci/EN/Y2013/V7/I3/384
Fig.1  Structures of the glycerol dialkyl glycerol tetraethers (GDGTs) and isoprenoid DGD analyzed in this study with corresponding [M+H] ions and nomenclature.
Fig.2  Relative abundance of the isoprenoidal and branched GDGTs in the core fraction (CL GDGTs), in the acid fraction hydrolyzed (IPL GDGTs) and in the fraction submitted to the alkaline hydrolysis (IPLp GDGTs).
Fig.3  Ratio profiles of (a) IPL GDGT-V and IPL GDGT-IV to their respective CL counterparts , (b) core archaeol to CL GDGT-IV and intact polar archaeol to IPL GDGT-IV , and (c) CL GDGT-V to CL GDGT-IV and IPL GDGT-V to IPL GDGT-IV.
Sample typeSample nameSoil Temp. /oCSoil pHIPL/CLbGDGT (IIa/Ia)MBTCBTMBT/CBT MAT /°CCBT pHBIT∑bGDGT /ng·g-1 dws∑ iGDGT/ng·g-1 dws
Dry soilB1-K45.4CL0.440.670.7820.46.60.9014.553.29
IPLn.d.n.d.n.d.n.d.n.d.n.d.0.280.44
Dry soilB2-K4.45.9CL0.430.680.7221.36.80.9516.681.59
IPLn.d.n.d.n.d.n.d.n.d.n.d.0.0670.12
Dry soilB3-K4.16.2CL0.430.690.7721.36.70.9555.304.80
IPLn.d.n.d.n.d.n.d.n.d.n.d.0.0670.045
Dry soilB4-K17.355.8CL0.450.670.7920.06.60.910.522.09
IPL0.400.690.7421.46.70,631.221.88
Dry soilB5-K17.76.4CL0.420.690.8021.26.60.9646.683.52
IPL0.420.670.7420.66.70.771.241.12
Bg F soilB1-F25.36.6CL0.470.670.7320.66.80.95110.179.61
IPL0.580.610.7217.86.80.633.054.58
Bg F soilB2-F23.86.9CL0.470.670.7220.76.80.96118.5010.28
IPL0.590.610.7217.96.80.663.514.92
Bg F soilB3-F24.57.5CL0.470.670.7820.16.60.94104.5911.27
IPL0.520.630.7418.86.80.843.552.81
F soilB4-F27.17.56CL0.530.640.7619.16.70.97144.6810.89
IPL0.510.640.7219.46.80.936.306.34
F soilB5-F27.2n.d.CL0.550.630.7918.26.60.97115.869.23
IPL0.490.660.8219.46.60.955.683.88
F soilB6-F28.27.6CL0.530.640.7619.16.70.97141.2510.08
IPL0.510.650.7419.66.80.925.015.37
F soilB7-F26.87.52CL0.600.610.7517.66.70.9667.425.68
IPL0.520.620.7319.46.80.922.701.44
F soilB8-F27.27.73CL0.630.600.7117.36.80.9518.451.79
Tab.1  Measured pH and temperature values, relative distribution data (bGDGT-IIa/ bGDGT-Ia), proxy values (MBT, CBT and BIT) and estimated pH and temperatures (after Weijers et al. ()).
Fig.4  CL GDGT-IIa to CL GDGT-Ia and IPL GDGT-IIa to IPL GDGT-Ia ratio profiles (a), variation in MBT () for CL and IPL fractions (b), the comparison of estimated temperatures (MAT) based on CL (open square) and IPL (grey filled diamonds), the mean annual air temperature of Wuhan (dashed line), and the measured soil temperature in situ (black circles) (c), variation in MBT` () for CL and IPL fractions (d), and comparison of estimated temperatures (MAT`) based on CL (open square) and IPL (grey filled diamonds) (e).
Fig.5  Cross-plots between IPL GDGT-IIa to IPL GDGT-Ia ratio and measured soil temperature (a), correlation between IPL GDGT-IIa to IPL GDGT-Ia ratio and soil pH (b), IPL GDGT-IIa to IPL GDGT-Ia ratio and soil pH in the beginning of soil flooding and during the flooding (c), CBT pH () (d), measured soil pH vs. CBT derived pH (e), and CBT pH` () (f). Dry soil (triangles), beginning of the soil flooding (squares) and during the soil flooding (circles). IPL fractions (black triangles, squares and circles) and CL fractions (open triangles, squares and circles).
Fig.6  Correlation of BIT index with the GDGT-V to crenarchaoel ratio for CL fraction (a) and IPL fraction (b).
1 Bligh E G, Dyer W J (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol , 37(8): 911–917
doi: 10.1139/o59-099 pmid:13671378
2 Chen X P, Zhu Y G, Xia Y, Shen J P, He J Z (2008). Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol , 10(8): 1978–1987
doi: 10.1111/j.1462-2920.2008.01613.x pmid:18430011
3 Chin K J, Rainey F A, Janssen P H, Conrad R (1998). Methanogenic degradation of polysaccharides and the characterization of polysaccharolytic clostridia from anoxic rice field soil. Syst Appl Microbiol , 21(2): 185–200
doi: 10.1016/S0723-2020(98)80023-4
4 Gro?kopf R R, Stubner S, LiesackW (1998). Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol , 64(12): 4983–4989
pmid:9835592
5 Harvey H R, Fallon R D, Patton J S (1986). The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochim Cosmochim Acta , 50(5): 795–804
doi: 10.1016/0016-7037(86)90355-8
6 Hopmans E C, Schouten S, Pancost R D, van der Meer M T J, Sinninghe Damsté J S (2000). Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom , 14(7): 585–589
doi: 10.1002/(SICI)1097-0231(20000415)14:7<585::AID-RCM913>3.0.CO;2-N pmid:10775092
7 Hopmans E C, Weijers J W H, Schefu? E, Herfort L, Sinninghe Damsté J S, Schouten S (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett , 224(1-2): 107–116
doi: 10.1016/j.epsl.2004.05.012
8 Huguet A, Fosse C, Laggoun-Défarge F, Toussaint M L, Derenne S (2010a). Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog. Org Geochem , 41(6): 559–572
doi: 10.1016/j.orggeochem.2010.02.015
9 Huguet A, Fosse C, Metzger P, Fritsch E, Derenne S (2010b). Occurrence and distribution of non-extractable glycerol dialkyl glycerol tetraethers in temperate and tropical podzol profiles. Org Geochem , 41(8): 833–844
doi: 10.1016/j.orggeochem.2010.04.020
10 Huguet A, Wiesenberg G L B, Gocke M, Fosse C, Derenne S (2012). Branched tetraether membrane lipids associated with rhizoliths in loess: Rhizomicrobial overprinting of initial biomarker record. Org Geochem , 43: 12–19
doi: 10.1016/j.orggeochem.2011.11.006
11 Huguet C, Hopmans E C, Febo-Ayala W, Thompson D H, Sinninghe Damsté J S, Schouten S (2006). An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem , 37(9): 1036–1041
doi: 10.1016/j.orggeochem.2006.05.008
12 Jones R T, Robeson M S, Lauber C L, Hamady M, Knight R, Fierer N (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J , 3(4): 442–453
doi: 10.1038/ismej.2008.127 pmid:19129864
13 Kates M, Kushner D J, Matheson A T (1993). The biochemistry of Archaea (Archaebacteria). Amsterdam: Elsevier Science Publishers
14 Kim J H, Van der Meer J, Schouten S, Helmke P, Willmott V, Sangiorgi F, Ko? N, Hopmans E C, Sinninghe Damsté J S (2010). New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta , 74(16): 4639–4654
doi: 10.1016/j.gca.2010.05.027
15 Koga Y, Kyuragi T, Nishihara M, Sone N (1998a). Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J Mol Evol , 46(1): 54–63
doi: 10.1007/PL00006283 pmid:9419225
16 Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998b). Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem , 62(2): 230–236
doi: 10.1271/bbb.62.230
17 K?nneke M, Bernhard A E, de la Torre J R, Walker C B, Waterbury J B, Stahl D A (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature , 437(7058): 543–546
doi: 10.1038/nature03911 pmid:16177789
18 Liesack W, Schnell S, Revsbech N P (2000). Microbiology of flooded rice paddies. FEMS Microbiol Rev , 24(5): 625–645
doi: 10.1111/j.1574-6976.2000.tb00563.x pmid:11077155
19 Liu X L, Leider A, Gillespie A, Gr?ger J, Versteegh G J M, Hinrichs K U (2010). Identification of polar lipid precursors of the ubiquitous branched GDGT orphan lipids in a peat bog in Northern Germany. Org Geochem , 41(7): 653–660
doi: 10.1016/j.orggeochem.2010.04.004
20 Logemann J, Graue J, K?ster J, Engelen B, Rullk?tter J, Cypionka H (2011). A laboratory experiment of intact polar lipid degradation in sandy sediments. J Biosci , 8: 3289–3321
21 Loomis S E, Russell J M, Sinninghe Damsté J S (2011). Distributions of branched GDGTs in soils and lake sediments from western Uganda: Implications for a lacustrine paleothermometer. Org Geochem , 42(7): 739–751
doi: 10.1016/j.orggeochem.2011.06.004
22 Lu Y, Conrad R (2005). In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science , 309(5737): 1088–1090
doi: 10.1126/science.1113435 pmid:16099988
23 Lu Y, Lueders T, Friedrich M W, Conrad R (2005). Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol , 7(3): 326–336
doi: 10.1111/j.1462-2920.2005.00697.x pmid:15683393
24 Oba M, Sakata S, Tsunogai U (2006). Polar and neutral isopranyl glycerol ether lipids as biomarkers of archaea in near-surface sediments from the Nankai Trough. Org Geochem , 37(12): 1643–1654
doi: 10.1016/j.orggeochem.2006.09.002
25 Pancost R D, Hopmans E, Sinninghe Damsté J S (2001). Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta , 65(10): 1611–1627
doi: 10.1016/S0016-7037(00)00562-7
26 Pancost R D, Sinninghe Damsté J S (2003). Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chem Geol , 195(1-4): 29–58
doi: 10.1016/S0009-2541(02)00387-X
27 Peterse F, Prins M A, Beets C J, Troelstra S R, Zheng H, Gu Z, Schouten S, Sinninghe Damsté J S (2011). Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth Planet Sci Lett , 301(1-2): 256–264
doi: 10.1016/j.epsl.2010.11.010
28 Peterse F, van der Meer J, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Sinninghe Damsté J S (2012). Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta , 96: 215–229
doi: 10.1016/j.gca.2012.08.011
29 Pitcher A, Hopmans E C, Schouten S, Sinninghe Damsté J S (2009). Separation of core and intact polar archaeal tetraether lipids using silica columns: Insights into living and fossil biomass contributions. Org Geochem , 40(1): 12–19
doi: 10.1016/j.orggeochem.2008.09.008
30 Pitcher A, Wutcher C, Siddenberg K, Schouten S, Sinninghe Damsté J S (2011). Crenarchaeol tracks winter blooms of ammonia-oxidizing Thaumarchaeota in the coastal North Sea. Limnol Oceanogr , 56(6): 2308–2318
doi: 10.4319/lo.2011.56.6.2308
31 Ponnamperuma F N (1985). Chemical kinetics of wetland rice soils relative to soil fertility. In: Proceeding of wetland soils: characterization, classification and utilization. Philippines , International Rice Research Institute, 71–89
32 Revsbech N, Pedersen O, Reichardt W, Briones A (1999). Microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fertil Soils , 29(4): 379–385
doi: 10.1007/s003740050568
33 Schouten S, Hopmans E C, Schefu? E, Sinninghe Damsté J S (2002). Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett , 204(1-2): 265–274
doi: 10.1016/S0012-821X(02)00979-2
34 Schouten S, Huguet C, Hopmans E C, Kienhuis M V M, Sinninghe Damsté J S (2007). Improved analytical methodology and constraints on analysis of the TEX86 paleothermometer by high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem , 79(7): 2940–2944
doi: 10.1021/ac062339v pmid:17311408
35 Sinninghe Damsté J S, Schouten S, Hopmans E C, van Duin A C, Geenevasen J A (2002). Crenarchaeol the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lip Res , 43(10): 1641–1651
doi: 10.1194/jlr.M200148-JLR200
36 Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, Weijers J W H, Foesel B U, Overmann J, Dedysh S N (2011). 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol , 77(12): 4147–4154
doi: 10.1128/AEM.00466-11 pmid:21515715
37 Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, Jung M Y, Kim J G, Rhee S K, Stieglmeier M, Schleper C (2012). Intact Polar and Core Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Group I. 1a and I. 1b Thaumarchaeota in Soil. Appl Environ Microbiol , 78(19): 6866–6874
doi: 10.1128/AEM.01681-12
38 Sturt H F, Summons R E, Smith K, Elvert M, Hinrichs K U (2004). Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom , 18(6): 617–628
doi: 10.1002/rcm.1378 pmid:15052572
39 Tierney J E, Russell J M (2009). Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of the MBT/CBT palaeoproxy. Org Geochem , 40(9): 1032–1036
doi: 10.1016/j.orggeochem.2009.04.014
40 Tierney J E, Russell J M, Eggermont H, Hopmans E C, Verschuren D, Sinninghe Damsté J S (2010). Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochim Cosmochim Acta , 74(17): 4902–4918
doi: 10.1016/j.gca.2010.06.002
41 Tierney J E, Schouten S, Pitcher A, Hopmans E C, Sinninghe Damsté J S (2012). Core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): insights into the origin of lacustrine GDGTs. Geochim Cosmochim Acta , 77: 561–581
doi: 10.1016/j.gca.2011.10.018
42 Weijers J W H, Panoto E, van Bleijswijk J, Schouten S, Rijpstra W I C, Balk M, Stams A J M, Sinninghe Damsté J S (2009). Constraints on the biological source (s) of the orphan branched tetraether membrane lipids. Geomicrobiol J , 26(6): 402–414
doi: 10.1080/01490450902937293
43 Weijers J W H, Schefuss E, Schouten S, Sinninghe Damsté J S (2007a). Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science , 315(5819): 1701–1704
doi: 10.1126/science.1138131 pmid:17379805
44 Weijers J W H, Schouten S, Hopmans E C, Geenevasen J A J, David O R P, Coleman J M, Pancost R D, Sinninghe Damsté J S (2006). Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol , 8(4): 648–657
doi: 10.1111/j.1462-2920.2005.00941.x pmid:16584476
45 Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damsté J S (2007b). Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta , 71(3): 703–713
doi: 10.1016/j.gca.2006.10.003
46 Weijers J W H, Wiesenberg G L B, Bol R, Hopmans E C, Pancost R D (2010). Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism (s). Biogeosciences , 7(9): 2959–2973
doi: 10.5194/bg-7-2959-2010
47 White D, Davis W, Nickels J, King J, Bobbie R (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia , 40(1): 51–62
doi: 10.1007/BF00388810
48 Yang H, Ding W, Wang J, Jin C, He G, Qin Y, Xie S (2012). Soil pH impact on microbial tetraether lipids and terrestrial input index (BIT) in China. Science China (Earth Sciences) , 55(2): 236–245
doi: 10.1007/s11430-011-4295-x
49 Yang H, Ding W, Zhang C L, Wu X, Ma X, He G, Huang J, Xie S (2011). Occurrence of tetraether lipids in stalagmites: Implications for sources and GDGT-based proxies. Org Geochem , 42(1): 108–115
doi: 10.1016/j.orggeochem.2010.11.006
[1] Huan YANG,Wenjie XIAO,Chengling JIA,Shucheng XIE. Paleoaltimetry proxies based on bacterial branched tetraether membrane lipids in soils[J]. Front. Earth Sci., 2015, 9(1): 13-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed