Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    0, Vol. Issue () : 465-479    https://doi.org/10.1007/s11707-013-0385-8
RESEARCH ARTICLE
Carbon emission trading system of China: a linked market vs. separated markets
Yu LIU1(email.png), Shenghao FENG2, Songfeng CAI3, Yaxiong ZHANG3, Xiang ZHOU4, Yanbin CHEN5, Zhanming CHEN5(email.png)
1. 1. Institute of Policy and Management, Chinese Academy of Sciences, Beijing 100190, China; 2. 2. Crawford School of Public Policy, Australian National University, Canberra ACT 0200, Australia; 3. 3. National Development and Research Commission, State Information Centre, Beijing 100045, China; 4. 4. Sun Yet-Sen Business School, Sun Yet-Sen University, Guangzhou 510275, China; 5. 5. School of Economics, Renmin University of China, Beijing 100872, China
 Download: PDF(207 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Chinese government intends to upgrade its current provincial carbon emission trading pilots to a nationwide scheme by 2015. This study investigates two of scenarios: separated provincial markets and a linked inter-provincial market. The carbon abatement effects of separated and linked markets are compared using two pilot provinces of Hubei and Guangdong based on a computable general equilibrium model termed SinoTERMCo2. Simulation results show that the linked market can improve social welfare and reduce carbon emission intensity for the nation as well as for the Hubei-Guangdong bloc compared to the separated market. However, the combined system also distributes welfare more unevenly and thus increases social inequity. On the policy ground, the current results suggest that a well-constructed, nationwide carbon market complemented with adequate welfare transfer policies can be employed to replace the current top-down abatement target disaggregation practice.

Keywords linked market      carbon emission trade      SinoTERMCo2     
Corresponding Author(s): LIU Yu,Email:liuyu@mx.cei.gov.cn; CHEN Zhanming,Email:chenzhanming@ruc.edu.cn, chenzhanming@pku.edu.cn   
Issue Date: 05 December 2013
 Cite this article:   
Songfeng CAI,Yaxiong ZHANG,Xiang ZHOU, et al. Carbon emission trading system of China: a linked market vs. separated markets[J]. Front Earth Sci, 0, (): 465-479.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0385-8
https://academic.hep.com.cn/fesci/EN/Y0/V/I/465
VariableMeaning
ET15Absolute emissions reduction target, 2011-2015 (%)
EB15BAU emissions in 2015
EP15Policy emissions in 2015
E10Emissions in 2010
EGAnnual emissions growth rate, 2011-2015
YB15BAU GDP in 2015
EI10Emissions intensity of GDP in 2010
EIT15Intensity-based emissions reduction target, 2011-2015
Y10GDP in 2010
YGAnnual GDP growth rate, 2011-2015
Tab.1  Meanings for variables in Equations
ProvinceYGEIT15EECYG10EGET15
Hubei10%17%0.8010%7.97%8.09%
Guangdong8%19.5%0.798%6.35%13.07%
Tab.2  Values for Eq. (7)
GDPPopulationGDP per capita
100×109 CNYclosest to10,000closest toCNYclosest to
Hubei15,967Nigeria5,728Italy27,906Angola
Guangdong45,473Indonesia10,441Philippine44,736Kazakhstan
Tab.3  An overview of Hubei and Guangdong, 2010
PrimarySecondaryTertiary
Hubei230908450
Guangdong2715,7141,570
Tab.4  Sector composition (×10 CNY), 2007
ProvinceCIGRExpRImpExpImpNMarStock
Hubei375369135634-90066-551214
Guangdong1,2818393122,309-3,2492,910-1,580-30137
Tab.5  GDP expenditure (×10 CNY), 2007
HubeiCoalPetroleumGasTotal
Metal smelt4,384.6679.512.95,076.9
ElecSteam4,635.814.74.84,655.3
NonMetalMine3,961.5302.218.54,282.2
Chemical2,712.2931.927.23,671.3
TransWarehse38.82,434.702,473.5
Contruction279.3348.90628.3
Agriculture116387.15.4508.5
Hotels Dining255.4172.812.7440.9
FoodTabaco189.52392.2430.7
GenerlSpelEqp152.4193.841.1387.3
Other industries800.81,502.644.52,347.8
Private consume985118.1529.71,632.8
Total17,526.37,207.2169.224,902.6
Tab.6  Carbon dioxide emissions (10,000 t), Hubei 2007
GuangdongCoalPetroleumGasTotal
ElecSteam11,514.81,205.2150.712,870.8
Non metal mine2,711.5412.8462.43,586.7
Chemical530.71,290.5662.72,483.9
MetalSmelt1,540354213.52,107.5
TransWarehse0.91,9880.31,989.2
Contruction1,091.192.143.61,226.9
Textile51472.425.3611.8
Hotels Dining375.854.319.8449.9
Crude oil gas73.4340.30.6414.3
GenerlSpelEqp52.7201.1134.1387.9
Other industries374.71,558673.42,606.1
Private consume567.1896.7863.32,327
Total18,779.77,568.62,386.528,734.9
Tab.7  Carbon dioxide emissions (10,000 t), Guangdong 2007
HubeiGuangdong
Industrytonne/10,000 CNYIndustrytonne/10,000 CNY
NMetalProdt11.741NonMetalMine4.751
ElecSteam10.469ElecSteam4.656
Metal smelt7.665NMetalProdt2.652
Chemical4.227MetalSmelt0.981
TransWarehse3.211CrudeOilGas0.952
Crude oil gas1.868TransWarehse0.911
Metal mine1.773PaprPrntCult0.51
Non metal mine1.704Chemical0.427
Hotels Dining1.466Post0.427
PetrlRefCoke1.123Textiles0.329
Tab.8  Top ten emission intensive industries, 2007
No LinkLink
HubeiGuangdongHubeiGuangdong
C-0.16-0.320.02-0.19
I-1.96-3.42-4.29-1.27
G0.000.000.000.00
X-0.47-0.73-1.39-0.23
M-0.95-0.71-2.02-0.32
GDP-1.13-2.13-2.57-0.76
Lab-0.46-1.39-1.15-0.48
Cap-1.80-2.75-3.92-1.01
Real wage-0.75-1.68-1.32-0.66
Pgdp0.280.820.910.27
CPI-0.010.360.170.11
Pexp0.120.180.350.06
Pimp0.000.000.000.00
Tab.9  Provincial macro variables (% change)
ScenarioUnitNoLinkLinkLink – NoLink
HubeiGuangdongBLOCHubeiGuangdongBLOCHubeiGuangdongBLOC
Real GDP change10m y-734-5,446-6,180-1,666-1,943-3,608-9313,5042,572
Consumption change10m y-58-415-4749-240-23167176243
Permit-selling revenue10m y3722,7913,1637841,0501,834412-1,741-1,329
Abatement10m t2.44.16.42.44.16.40.00.00.0
Self-abatement10m t2.44.16.44.71.86.42.3-2.30.0
Purchased-abatement10m t0.00.00.0-2.32.3n.a.-2.32.3n.a.
Permit pricey/t15.4103.4n.a.35.935.9n.a.20.5-67.6n.a.
Permit trade income10m y0.00.00.082.2-82.5n.a.82.2-82.5n.a.
Average abatement costy/t3101,341961703478562393-863-399
Tab.10  Welfare change and abatement cost
NoLinkLink
HubeiGuangdongHubeiGuangdong
xc-0.16-0.320.02-0.19
=
Sl×wl-1.08-2.27-2.04-0.87
Sk×wk-0.18-0.41-0.38-0.15
Sn×wn0.000.000.000.00
Spm×wpm1.132.742.371.03
Spmtrd×wpmtrd0.000.000.25-0.08
-pc0.01-0.36-0.17-0.11
houslack-0.03-0.03-0.01-0.01
Sum RHS-0.16-0.330.02-0.19
Tab.11  contribution to percentage changes in real consumption
NoLinkLink
HubeiGuangdongHubeiGuangdong
Scxc-0.09-0.160.01-0.09
=
A0000
Snxn0.000.000.000.00
Slxl-0.21-0.46-0.52-0.16
Skxk-0.63-1.13-1.36-0.42
Stprodxtprod-0.02-0.03-0.05-0.01
Stcomxtcom-0.27-0.48-0.63-0.16
-Sixi1.111.122.430.42
-Sgxg0.000.000.000.00
-Sqxq-0.03-0.06-0.07-0.02
-Sexe0.050.820.140.26
Smxm-0.08-0.44-0.17-0.19
-Serxer1.221.462.840.58
Smrxmr-1.19-0.71-2.44-0.29
-Snmrxnmr-0.04-0.23-0.15-0.08
Sum RHS-0.09-0.140.02-0.09
Tab.12  Summarizes Eq. (18) for the two provinces under both scenarios
Fig.1  Industrial output and emission intensity, Hubei.
Fig.2  Industrial output and emission intensity, Guangdong.
Real GDPEmissionsEmission intensity
NoLink-0.11-0.58-0.48
Link-0.06-0.79-0.73
Tab.13  Key nation-wide indicators
1 Babiker M, Reilly J, Viguier L (2004). Is international emissions trading always beneficial? Energy J (Camb Mass) , 25(2): 33–56
doi: 10.5547/ISSN0195-6574-EJ-Vol25-No2-2
2 Burniaux J M, Truong T P (2002). GTAP-E: An Energy-Environmental Version of the GTAP Model. GTAP Technical paper 16
3 Chen S Q, Chen B, Fath B D (2013). Ecological risk assessment on the system scale: a review of state-of-the-art models. Ecol Modell , 250: 25–33
doi: 10.1016/j.ecolmodel.2012.10.015
4 Chen Z M, Chen G Q (2011a). An overview of energy consumption of the globalized world economy. Energy Policy , 39(10): 5920–5928
doi: 10.1016/j.enpol.2011.06.046
5 Chen Z M, Chen G Q (2011b). Embodied carbon dioxide emission at supra-national scale: a coalition analysis for G7, BRIC, and the rest of the world. Energy Policy , 39(5): 2899–2909
doi: 10.1016/j.enpol.2011.02.068
6 Chen Z M, Chen G Q (2013a). Demand-driven energy requirement of world economy 2007: a multi-region input-output network simulation. Commun Nonlinear Sci Numer Simul , 18(7): 1757–1774
doi: 10.1016/j.cnsns.2012.11.004
7 Chen Z M, Chen G Q (2013b). Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol Indic , 28: 142–149
doi: 10.1016/j.ecolind.2012.07.024
8 Chen Z M, Chen G Q, Xia X H, Xu S Y (2012). Global network of embodied water flow by systems input-output simulation. Frontiers of Earth Science , 6(3): 331–344
doi: 10.1007/s11707-012-0305-3
9 Economist (2011). Comparing Chinese provinces with countries - All the parities in China [Online]. Available: http://www.economist.com/content/chinese_equivalents [Accessed 22/09/2012 2012]
10 Flachsland C, Marschinski R, Edenhofer O (2009). To link or not to link: benefits and disadvantages of linking cap-and-trade systems. Climate Policy , 9(4): 358–372
doi: 10.3763/cpol.2009.0626
11 He J W, Li S T (2010). Carbon reduction and regional economy. Manage Rev , 22(6): 9–16 (in Chinese)
12 Horridge M, Madden J, Wittwer G (2005). The impact of the 2002–2003 drought on Australia. J Policy Model , 27(3): 285–308
doi: 10.1016/j.jpolmod.2005.01.008
13 Horridge M, Wittwer G (2008). SinoTERM, a multi-regional CGE model of China. China Econ Rev , 19(4): 628–634
doi: 10.1016/j.chieco.2008.05.002
14 Hubacek K, Feng K S, Chen B (2012). Changing lifestyles towards a low carbon economy: an IPAT analysis for China. Energies , 5(1): 22–31
15 IOSCPRC (2011). State Council White Paper: China’s Policies and Actions for Addressing Climate Change. Available: http://www.gov.cn/english/official/2011-11/22/content_2000272.htm [Accessed 20/01/2013]
16 Li J M, Huang Z H (2005). Cost of reducing carbon dioxide and strategy —Taiwan to participate in international emissions trading system. Economic Research , 41(2): 155–189 (in Chinese )
17 Li N, Shi M J, Yuan Y N (2010). Impacts of carbon tax policy on regional development in China: a dynamic simulation based on multi-regional CGE model. Geographical Science , 65(12): 1569–1580 (in Chinese)
18 Liang Q M, WeiY M (2012). Distributional impacts of taxing carbon in China: results from the CEEPA model. Appl Energy , 92(2): 545–551
doi: 10.1016/j.apenergy.2011.10.036
19 Lin W B, Yang J, Chen B (2011). Temporal and spatial analysis of integrated energy and environment efficiency in China based on the Green GDP Index. Energies , 4(9): 1376–1390
doi: 10.3390/en4091376
20 Lipsey R G, Lancaster K (1956). The general theory of second best. Rev Econ Stud , 24(1): 11–32
doi: 10.2307/2296233
21 Lokhov R, Welsch H (2008). Emission trading between Russia and the European Union: a CGE Analysis of potentials and impacts. Environ Econ Policy Stud , 9(1): 1–23
22 Mai Y, DixonP B, Rimmer M (2012). CHINAGEM: A Monash-Styled Dynamic CGE Model of China. CoPS/IMPACT Working Paper Number G-201
23 McDougall R, Golub A (2007). GTAP-E: A Revised Energy- Environmental Version of the GTAP Model. GTAP Resource #2959
24 Nordhaus W D, Boyer J G (1999). Requiem for Kyoto: an economic analysis of the Kyoto protocol. Energy J (Camb Mass) : 93–130
25 Ren Z Q (2008). Issues concerning global warming today. Frontiers of Earth Science , 2(1): 27–30
doi: 10.1007/s11707-008-0009-x
26 Stern D I, Pezzey J C V, Lambie N R (2011). Where in the World is it Cheapest to Cut Carbon Emissions? Ranking Countires by Total and Marginal Cost of Abatement. CCEP Working Paper 1111, Centre for Climate Economics & Policy, Crawford School of Economics and Government, The Australian National University, Canberra .
27 Su M, Liang C, Chen B, Chen S, Yang Z (2012). Low-carbon development patterns: observations of typical Chinese cities. Energies , 5(2): 291–304
doi: 10.3390/en5020291
28 Webster M, Paltsev S, Reilly J (2010). The hedge value of international emissions trading under uncertainty. Energy Policy , 38(4): 1787–1796
doi: 10.1016/j.enpol.2009.11.054
29 Wei S K, Gnauck A, Lei A L (2009). Simulation analysis of domestic water demand and its future uncertainty in water scarce areas. Front Earth Sci China , 3(3): 349–360
doi: 10.1007/s11707-009-0047-z
30 Yang J, Chen B (2011). Using LMDI method to analyze the change of industrial CO2 emission from energy use in Chongqing. Frontiers of Earth Science , 5(1): 103–109
doi: 10.1007/s11707-011-0172-3
31 Yi H H, Hao J M, Tang X L (2007). Atmospheric environmental protection in China: current status, developmental trend and research emphasis. Energy Policy , 35(2): 907–915
doi: 10.1016/j.enpol.2006.01.019
32 Zhang L X, Feng Y Y, Chen B (2011). Alternative scenarios for the development of a low-carbon city: a case study of Beijing, China. Energies , 4(12): 2295–2310
doi: 10.3390/en4122295
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed