Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2014, Vol. 8 Issue (1) : 70-80    https://doi.org/10.1007/s11707-013-0388-5
RESEARCH ARTICLE
Coupled planning of water resources and agricultural land-use based on an inexact-stochastic programming model
Cong DONG1, Guohe HUANG1, Qian TAN1,2, Yanpeng CAI2,3()
1. MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China; 2. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; 3. Institute for Energy, Environment and Sustainable Communities, University of Regina, Saskatchewan S4S 7H9, Canada
 Download: PDF(260 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Water resources are fundamental for support of regional development. Effective planning can facilitate sustainable management of water resources to balance socioeconomic development and water conservation. In this research, coupled planning of water resources and agricultural land use was undertaken through the development of an inexact-stochastic programming approach. Such an inexact modeling approach was the integration of interval linear programming and chance-constraint programming methods. It was employed to successfully tackle uncertainty in the form of interval numbers and probabilistic distributions existing in water resource systems. Then it was applied to a typical regional water resource system for demonstrating its applicability and validity through generating efficient system solutions. Based on the process of modeling formulation and result analysis, the developed model could be used for helping identify optimal water resource utilization patterns and the corresponding agricultural land-use schemes in three sub-regions. Furthermore, a number of decision alternatives were generated under multiple water-supply conditions, which could help decision makers identify desired management policies.

Keywords water resources management      regional water system      planning      scenario analysis      uncertainty     
Corresponding Author(s): CAI Yanpeng,Email:yanpeng.cai@iseis.org   
Issue Date: 05 March 2014
 Cite this article:   
Cong DONG,Guohe HUANG,Qian TAN, et al. Coupled planning of water resources and agricultural land-use based on an inexact-stochastic programming model[J]. Front Earth Sci, 2014, 8(1): 70-80.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0388-5
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I1/70
Fig.1  The typical regional farmland use and water resources system.
Sub-regionCropPeriod
t = 1t = 2t = 3
1Corn[645, 650][655, 660][665, 670]
Potato[2950, 3000][3050, 3100][3150, 3200]
Rice[845, 850][855, 860][865, 870]
2Corn[65, 660][665, 670][675, 680]
Potato[3150, 3200][3250, 3300][3350, 3400]
Rice[855, 860][865, 870][875, 880]
3Corn[635, 640][645, 650][655, 660]
Potato[2850, 2900][2950, 3000][3050, 3100]
Rice[835, 840][845, 850][855, 860]
Tab.1  Crop yields (tonne/km)
Sub-regionIndustry typePeriod
t = 1t = 2t = 3
1Metallurgical industry[0.745, 0.754][0.769, 0.778][0.786, 0.795]
Food industry[0.706, 0.715][0.724, 0.732][0.737, 0.745]
2Metallurgical industry[0.713, 0.725][0.735, 0.743][0.754, 0.768]
Food industry[0.680, 0.689][0.694, 0.705][0.711, 0.720]
3Metallurgical industry[0.769, 0.778][0.790, 0.798][0.827, 0.835]
Food industry[0.740, 0.748][0.761, 0.770][0.784, 0.795]
1Tourism[0.866, 0.875]0.8960.918
2[0.840, 0.847]0.8600.873
3[0.814, 0.815][0.820, 0.828][0.829, 0.840]
1Resident[0.573, 0.584][0.609, 0.618][0.628, 0.635]
2[0.573, 0.585][0.609, 0.619][0.628, 0.636]
3[0.573, 0.586][0.609, 0.620][0.628, 0.637]
Tab.2  Benefits of water supply for industrial, tourism, and municipal sectors ($/m)
PeriodSignificance level
Pi = 0.01Pi = 0.05Pi = 0.10Pi = 0.15
Maximum available surface drainage water amount
t = 1[2587, 2678][2742.22, 2838.68][2871.57, 2972.58][3000.92, 3106.48]
t = 2[2496, 2564][2645.76, 2717.84][2770.56, 2846.04][2895.36, 2974.24]
t = 3[2415, 2504][2559.90, 2654.24][2680.65, 2779.44][2801.40, 2904.64]
Maximum available groundwater amount
t = 1[4275, 4356][4488.75, 4573.80][4617, 4704.48][4809.38, 4900.50]
t = 2[3984, 4056][4183.20, 4258.80][4302.72, 4380.48][4482, 4563]
t = 3[3485, 3567][3659.25, 3745.35][3763.80, 3852.36][3920.63, 4012.88]
Maximum available river water amount
t = 1[11855, 12146][12566.30, 12874.76][13040.50, 13482.06][13751.80, 14089.36]
t = 2[11446, 11814][12132.76, 12522.84][12590.60, 13113.54][13277.36, 13704.24]
t = 3[11187, 11535][11858.22, 12227.10][12305.70, 12803.85][12976.92, 13380.60]
Tab.3  Maximum available water resource under different significance level (×10 m)
Sub-regionCropPeriod
t = 1t = 2t = 3
1Corn[6.44, 10.63]00
Potato04.47[7, 9.29]
Rice61.3760.5349.71
Total[67.81, 72]65[56.71, 59]
2Corn17.8200
Potato5.2120.9738.57
Rice64.9756.0340.01
Total887778.58
3Corn66[37.17, 42.15]0
Potato05.490.53
Rice011.3639.47
Total66[54.02, 59]40
Tab.4  Cropping areas (km)
CropPeriod
t = 1t = 2t = 3
Corn[13.42, 13.68][5.44, 6.05]0
Potato0.804.716.90
Rice60.3960.9561.45
Total[74.61, 74.87][71.10, 71.71]68.35
Tab.5  Irrigation requirements for different corps (×10 m)
Fig.2  The water resource allocated to industry under a lower bound.
Sub-regionIndustry typePeriod
t = 1t = 2t = 3
1Tourism[1.75, 8][2.93, 10.48][6.20, 15.67]
Municipal[14.47, 14.89][16.23, 16.94][17.37, 17.83]
2Tourism000
Municipal[11.26, 11.84][12.17, 12.74][12.41, 12.95]
3Tourism000
Municipal[9.36, 9.78][10.14, 10.74][11.26, 11.89]
Tab.6  Water requirements for tourism and municipal sectors (×10 m)
Period
t = 1t = 2t = 3
Erosion (106 tonnes)
Corn19.947.620
Potato[2.29, 2.32][13.04, 13.26][20.30, 20.88]
Rice[4.05, 4.24][4.03, 4.22][3.92, 4.10]
Wastewater (106 tonnes)
[18.12, 18.75][18.64, 19.29][19.15, 19.71]
Total nitrogen (106 tonnes)
[1.50, 1.51][1.30, 1.32][1.08, 1.09]
Total phosphor (106 tonnes)
[0.41, 0.42]0.36[0.29, 0.30]
Tab.7  Solutions of pollution controlling actions
Fig.3  The surface drainage water resource allocated to sub-region 2 under a lower bound.
Fig.4  The groundwater resource allocated to sub-region 3 under a lower bound.
Sub-regionPeriodSignificance level
Pi = 0.01Pi = 0.05Pi = 0.10Pi = 0.15
1t = 1[61.95, 65.76][65.08, 69.12][65.32, 69.11][71.76, 76.17]
t = 2[62.14, 66.59][65.14, 69.86][65.37, 69.86][73.08, 78.25]
t = 3[63.49, 67.74][66.37, 70.87][66.58, 70.87][80, 84.93]
2t = 126.3427.9927.8629.89
t = 223.7525.3325.2026.38
t = 319.9921.4921.3719.47
3t = 117.2218.7718.9720.75
t = 215.9817.5117.7118.72
t = 316.0917.6817.8816.02
Tab.8  Available water resource allocation in the river (×10 m)
Fig.5  The system benefit.
1 Abu-Taleb M, Mareschal B (1995). Water resources planning in the Middle East: application of the PROMETHEE V multicriteria method. Eur J Oper Res , 81(3): 500–511
doi: 10.1016/0377-2217(94)00007-Y
2 Bao C, Fang C L (2007). Water resources constraint force on urbanization in water deficient regions: case study of the Hexi Corridor, arid area of NW China. Ecol Econ , 62(3–4): 508–517
doi: 10.1016/j.ecolecon.2006.07.013
3 Bender M J, Simonovic S P (2000). A fuzzy compromise approach to water resource systems planning under uncertainty. Fuzzy Sets Syst , 115(1): 35–44
doi: 10.1016/S0165-0114(99)00025-1
4 Cai Y P, Huang G H, Nie X H, Li Y P, Tan Q (2007). Municipal solid waste management under uncertainty: a mixed interval parameter fuzzy–stochastic robust programming approach. Environ Eng Sci , 24(3): 338–352
doi: 10.1089/ees.2005.0140
5 Cai Y P, Huang G H, Tan Q (2009c). An inexact optimization model for regional energy systems planning in the mixed stochastic and fuzzy environment. Int J Energy Res , 33(5): 443–468
doi: 10.1002/er.1483
6 Cai Y P, Huang G H, Tan Q, Yang Z F (2009a). Planning of community–scale renewable energy management systems in a mixed stochastic and fuzzy environment. Renew Energy , 34(7): 1833–1847
doi: 10.1016/j.renene.2008.11.024
7 Cai Y P, Huang G H, Yang Z F, Lin Q G, Tan Q (2009b). Community–scale renewable energy systems planning under uncertainty––an interval chance–constrained programming approach. Renew Sustain Energy Rev , 13(4): 721–735
doi: 10.1016/j.rser.2008.01.008
8 Carter N, Kreutzwiser R D, de Lo? R C (2005). Closing the circle: linking land use planning and water management. Land Use Policy , 22(2): 115–127
doi: 10.1016/j.landusepol.2004.01.004
9 Castelletti A, Pianosi F, Soncini-Sessa R (2008). Integration, participation and optimal control in water resources planning and management. Appl Math Comput , 206(1): 21–33
doi: 10.1016/j.amc.2007.09.069
10 Chen Y, Marc Kilgour D, Hipel K W (2006). Multiple criteria classification with an application in water resources planning. Comput Oper Res , 33(11): 3301–3323
doi: 10.1016/j.cor.2005.03.026
11 Dong C, Huang G H, Cai Y P, Liu Y (2012). An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city. Energy , 37(1): 673–688
doi: 10.1016/j.energy.2011.10.030
12 Fagan J E, Reuter M A, Langford K J (2010). Dynamic performance metrics to assess sustainability and cost effectiveness of integrated urban water systems. Resour Conserv Recycling , 54(10): 719–736
doi: 10.1016/j.resconrec.2009.12.002
13 Huang G H (1996). IPWM: an interval parameter water quality management model. Eng Optim , 26(2): 79–103
doi: 10.1080/03052159608941111
14 Huang G H, Batez B W, Patry G G (1992). A grey linear programming approach for municipal solid waste management planning under uncertainty. Civ Eng Syst , 9(4): 319–335
doi: 10.1080/02630259208970657
15 Huang G H, Batez B W, Patry G G (1995a). Grey quadratic programming and its application to municipal solid waste management planning under uncertainty. Eng Optim , 23(3): 201–223
doi: 10.1080/03052159508941354
16 Huang G H, Batez B W, Patry G G (1995b). Grey integer programming: an application to waste management planning under uncertainty. Eur J Oper Res , 83(3): 594–620
doi: 10.1016/0377-2217(94)00093-R
17 Jiang Y, Liu J, Cui Q, An X H, Wu C X (2011). Land use/land cover change and driving force analysis in Xishuangbanna Region in 1986–2008. Frontiers of Earth Science , 5(3): 288–293
18 Karmakar S, Mujumdar P P (2006). An inexact optimization approach for river water-quality management. J Environ Manage , 81(3): 233–248
doi: 10.1016/j.jenvman.2005.10.009 pmid:16545902
19 Li W, Li Y P, Li C H, Huang G H (2010). An inexact two-stage water management model for planning agricultural irrigation under uncertainty. Agric Water Manage , 97(11): 1905–1914
doi: 10.1016/j.agwat.2010.07.005
20 Loukas A, Mylopoulos N, Vasiliades L (2007). A modeling system for the evaluation of water resources management strategies in Thessaly, Greece. Water Resour Manage , 21(10): 1673–1702
doi: 10.1007/s11269-006-9120-5
21 Lu H W, Huang G H, Zhang Y M, He L (2012). Strategic agricultural land-use planning in response to water-supplier variation in a China’s rural region. Agric Syst , 108: 19–28
doi: 10.1016/j.agsy.2011.10.007
22 Mahmoud M I, Gupta H V, Rajagopal S (2011). Scenario development for water resources planning and watershed management: methodology and semi-arid region case study. Environ Model Softw , 26(7): 873–885
doi: 10.1016/j.envsoft.2011.02.003
23 Mainuddin M, Das Gupta A, Rai Onta P (1997). Optimal crop planning model for an existing groundwater irrigation project in Thailand. Agric Water Manage , 33(1): 43–62
doi: 10.1016/S0378-3774(96)01278-4
24 Mugabi J, Kayaga S, Njiru C (2007). Strategic planning for water utilities in developing countries. Util Policy , 15(1): 1–8
doi: 10.1016/j.jup.2006.10.001
25 Pang A P, Li C H, Sun T, Yang Z F (2013). An improved ET control method to determine the water-saving potential for farmland in Baiyangdian Watershed, China. Frontiers of Earth Science , 7(2): 151–158
26 Patterson C L, Adams J Q (2011). Emergency response planning to reduce the impact of contaminated drinking water during natural disasters. Frontiers of Earth Science , 5(4): 341–349
27 Qin X S, Huang G H, Chakma A (2008). Modeling groundwater contamination under uncertainty: a factorial-design-based stochastic approach. Journal of Environmental Informatics , 11(1): 11–20
doi: 10.3808/jei.200800106
28 Reca J, Roldan J, Alcaide M, Lopez R, Camacho E (2001). Optimization model for water allocation in deficit irrigation systems: I. Description of the model. Agric Water Manage , 48(2): 103–116
doi: 10.1016/S0378-3774(00)00126-8
29 Seifi A, Hipel K W (2001). Interior-point method for reservoir operation with stochastic inflows. J Water Resour Plan Manage , 127(1): 48–57
doi: 10.1061/(ASCE)0733-9496(2001)127:1(48)
30 Sethi L N, Panda S N, Nayak M K (2006). Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India. Agric Water Manage , 83(3): 209–220
doi: 10.1016/j.agwat.2005.11.009
31 Sutardi, Bettorb C R, Goulter I (1995). Multiobjective water resources investment planning under budgetary uncertainty and fuzzy environment. European Journal of Operational Research , 82(3): 556–591
32 Tan Q, Huang G H, Cai Y P (2010). Identification of optimal plans for municipal solid waste management in an environment of fuzziness and two-layer randomness. Stochastic Environ Res Risk Assess , 24(1): 147–164
doi: 10.1007/s00477-009-0307-1
33 Tan Q, Huang G H, Cai Y P (2011). Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty. Agric Water Manage , 98(10): 1595–1606
doi: 10.1016/j.agwat.2011.05.013
34 Weng S Q, Huang G H, Li Y P (2010). An integrated scenario-based multi-criteria decision support system for water resources management and planning—a case study in the Haihe River Basin. Expert Syst Appl , 37(12): 8242–8254
doi: 10.1016/j.eswa.2010.05.061
35 Younos T (2011). Paradigm shift: holistic approach for water management in urban environments. Frontiers of Earth Science , 5(4): 421–427
36 Zhang X H, Zhang H W, Chen B, Chen G Q, Zhao X H (2008). Water resources planning based on complex system dynamics: a case study of Tianjin city. Commun Nonlinear Sci Numer Simul , 13(10): 2328–2336
doi: 10.1016/j.cnsns.2007.05.031
[1] KuoRay MAO, Qian ZHANG, Yongji XUE, Nefratiri WEEKS. Toward a socio-political approach to water management: successes and limitations of IWRM programs in rural north-western China[J]. Front. Earth Sci., 2020, 14(2): 268-285.
[2] Shifa MA, Feng LIU, Chunlei MA, Xuemin OUYANG. Integrating logistic regression with ant colony optimization for smart urban growth modelling[J]. Front. Earth Sci., 2020, 14(1): 77-89.
[3] D.M. HULTSTRAND, S.R. FASSNACHT. The sensitivity of snowpack sublimation estimates to instrument and measurement uncertainty perturbed in a Monte Carlo framework[J]. Front. Earth Sci., 2018, 12(4): 728-738.
[4] Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
[5] S.R. FASSNACHT, K.S.J. BROWN, E.J. BLUMBERG, J.I. LÓPEZ MORENO, T.P. COVINO, M. KAPPAS, Y. HUANG, V. LEONE, A.H. KASHIPAZHA. Distribution of snow depth variability[J]. Front. Earth Sci., 2018, 12(4): 683-692.
[6] Grey S. NEARING, Hoshin V. GUPTA. Ensembles vs. information theory: supporting science under uncertainty[J]. Front. Earth Sci., 2018, 12(4): 653-660.
[7] Bilaşco ŞTEFAN, Roşca SANDA, Fodorean IOAN, Vescan IULIU, Filip SORIN, Petrea DĂNUŢ. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models[J]. Front. Earth Sci., 2018, 12(2): 311-324.
[8] Wei LI,Changchun FENG,Chao DAI,Yongping LI,Chunhui LI,Ming LIU. An inexact risk management model for agricultural land-use planning under water shortage[J]. Front. Earth Sci., 2016, 10(3): 419-431.
[9] C. DAI,W. SUN,Q. TAN,Y. LIU,W.T. LU,H.C. GUO. Risk management for sulfur dioxide abatement under multiple uncertainties[J]. Front. Earth Sci., 2016, 10(1): 87-107.
[10] Yue LIU,Qiuming CHENG,Qinglin XIA,Xinqing WANG. The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China[J]. Front. Earth Sci., 2015, 9(2): 342-354.
[11] Chengkang GAO,Dan WANG,Baohua ZHAO,Shan CHEN,Wei QIN. Analyzing and forecasting CO2 emission reduction in China’s steel industry[J]. Front. Earth Sci., 2015, 9(1): 105-113.
[12] Ran WANG,Yin LI,Qian TAN. A review of inexact optimization modeling and its application to integrated water resources management[J]. Front. Earth Sci., 2015, 9(1): 51-64.
[13] Richard M. Males, Jeffrey A. Melby. Monte Carlo simulation model for economic evaluation of rubble mound breakwater protection in Harbors[J]. Front Earth Sci, 2011, 5(4): 432-441.
[14] Craig L. Patterson, Jeffrey Q. Adams. Emergency response planning to reduce the impact of contaminated drinking water during natural disasters[J]. Front Earth Sci, 2011, 5(4): 341-349.
[15] Xianglian LI, Qiong GAO, Tingwu LEI, Xiusheng YANG. Application of an integrative hydro-ecological model to study water resources management in the upper and middle parts of the Yellow River basin[J]. Front Earth Sci, 2011, 5(1): 45-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed