Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2014, Vol. 8 Issue (1) : 81-92    https://doi.org/10.1007/s11707-013-0421-8
RESEARCH ARTICLE
Integrating global socio-economic influences into a regional land use change model for China
Xia XU1,2, Qiong GAO1, Changhui PENG2, Xuefeng CUI1,3(), Yinghui LIU4, Li JIANG1,5
1. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
2. Department of Biology Sciences, institute of environment Science, University of Quebec at Montreal, Montreal H3C 3P8, Canada
3. College of Global Change and Earth System Research, Beijing Normal University, Beijing 100875, China
4. Academy of Resource, Beijing Normal University, Beijing 100875, China
5. Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China
 Download: PDF(384 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socio-economic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

Keywords global socio-economic influence      land use change model      integrating      China     
Corresponding Author(s): Xuefeng CUI   
Issue Date: 05 March 2014
 Cite this article:   
Xia XU,Qiong GAO,Changhui PENG, et al. Integrating global socio-economic influences into a regional land use change model for China[J]. Front. Earth Sci., 2014, 8(1): 81-92.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-013-0421-8
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I1/81
1 J Bolliger, H Lischke, D G Green (2005). Simulating the spatial and temporal dynamics of landscapes using generic and complex models. Ecol Complex, 2(2): 107–116
https://doi.org/10.1016/j.ecocom.2004.11.005
2 F Bousquet, C le Page (2004). Multi-agent simulations and ecosystem management: a review. Ecol Modell, 176(3–4): 313–332
https://doi.org/10.1016/j.ecolmodel.2004.01.011
3 S D Brody (2003). Implementing the principles of ecosystem management through local land use planning. Popul Environ, 24(6): 511–540
https://doi.org/10.1023/A:1025078715216
4 D G Brown, B C Pijanowski, J D Duh (2000). Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA. Environ Manage, 59(4): 247–263
https://doi.org/10.1006/jema.2000.0369
5 M E Brown, C C Funk (2008). Food security under climate change. Science, 319(5863): 580–581
https://doi.org/10.1126/science.1154102 pmid: 18239116
6 J C Castella, P H Verburg (2007). Combination of process-oriented and pattern oriented models of land-use change in a mountain area of Vietnam. Ecol Modell, 202(3–4): 410–420
https://doi.org/10.1016/j.ecolmodel.2006.11.011
7 T W Crawford, J P Messina, S Manson, D O’Sullivan (2005). Complexity science, complex systems, and land use research: guest editorial. Environment plan B, 32: 792–798
8 C T de Wit, H van Keulen, N G Seligman, I Spharim (1988). Application of interactive multiple goal programming techniques for analysis and planning of regional agricultural development. Agric Syst, 26(3): 211–230
https://doi.org/10.1016/0308-521X(88)90012-1
9 C Dietzel, K C Clarke (2007). Toward optimal calibration of the SLEUTH land use change model. Transactions in GIS, 11(1): 29–45
https://doi.org/10.1111/j.1467-9671.2007.01031.x
10 G Engelen, R White, I Uljee, P Drazan (1995). Using cellular automata for integrated modeling of socio-environmental system. Environ Monit Assess, 34(2): 203–214
https://doi.org/10.1007/BF00546036
11 FAO (1995). Planning for sustainable use of land resource. Towards a new approach. Background paper to FAOs Task Managership for Chapter 10 of Agenda 21 of the United Nations Conference on Environment and Development (UNCED). Prepared by Land and Water Development Division and approved by Interdepartmental Working Group on Land Use Planning, FAO
12 J A Foley, R Defries, G P Asner, C Barford, G Bonan, S R Carpenter, F S Chapin, M T Coe, G C Daily, H K Gibbs, J H Helkowski, T Holloway, E A Howard, C J Kucharik, C Monfreda, J A Patz, I C Prentice, N Ramankutty, P K Snyder (2005). Global consequences of land use. Science, 309(5734): 570–574
https://doi.org/10.1126/science.1111772 pmid: 16040698
13 Q Gao, M Yu, Y H Liu, H M Xu, X Xu (2007). Modeling interplay between regional net ecosystem carbon balance and soil erosion for a crop-pasture region. J Geophys Res, 112(G4): G04005
https://doi.org/10.1029/2007JG000455
14 H Haberl, K H Erb, F Krausmann, W Loibl, N Schulz, H Weisz (2001). Changes in ecosystem processes induced by land use: human appropriation of aboveground NPP and its influence on standing crop in Austria. Global Biogeochem Cycles, 15(4): 929–942
https://doi.org/10.1029/2000GB001280
15 C He, N Okada, Q Zhang, P Shi, J Li (2008). Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landsc Urban Plan, 86(1): 79–91
https://doi.org/10.1016/j.landurbplan.2007.12.010
16 K Hilferink, P Rietveld (1999). Land use scanner: an integrated GIS based model for long term projections of land use in urban and rural areas. J Geogr Syst, 1(2): 155–177
https://doi.org/10.1007/s101090050010
17 L Jiang, X Cui, X Xu, Y Jiang, M Rounsevell, D Murray-Rust, YH Liu(2013) A simple global food system model. Agricultural Economics, (in press)
18 J D Kline, A Moses, G J Lettman, D L Azuma (2007). Modeling forest and range land development in rural locations, with examples from eastern Oregon. Landsc Urban Plan, 80(3): 320–332
https://doi.org/10.1016/j.landurbplan.2006.10.017
19 F Krausmann (2001). Land use and industrial modernization: an empirical analysis of human influence on the functioning of ecosystems in Austria 1830–1995. Land Use Policy, 18(1): 17–26
https://doi.org/10.1016/S0264-8377(00)00042-9
20 F Krausmann, H Haberl, N B Schulz, K H Erb, E Darge, V Gaube (2003). Land use change and socio-economic metabolism in Austria—part I: driving forces of land-use change: 1950–1995. Land Use Policy, 20(1): 1–20
https://doi.org/10.1016/S0264-8377(02)00048-0
21 G Kruseman, R Ruben, H Hengsdijk, M van Ittersum (1995). Farm household modeling for estimating the effectiveness of price instruments in land use policy. Neth J Agric Sci, 43: 111–123
22 A Kuyvenhoven, R Ruben, G Kruseman (1995). Options for sustainable agricultural systems and policy instruments to reach them. In: Eco-regional Approaches for Sustainable Land Use and Food Production, 12–16 December 1994, ISNAR. Kluwer Academic Publishers,187–212
23 E F Lambin, M D A Rounsevell, H J Geist (2000). Are agricultural land-use models able to predict changes in land-use intensity? Agric Ecosyst Environ, 82(1–3): 321–331
https://doi.org/10.1016/S0167-8809(00)00235-8
24 X Lee, M Goulden, D Hollinger, A Barr, TA Black, G Bohrer, R Bracho, B Drake, A Goldstein, L Gu, G Katul, T Kolb, BE Law, H Margolis, T Meyers, R Monson, W Munger, R Oren, Tha Paw U K, AD Richardson, HP Schmid, R Staebler, S Wofsy, L Zhao (2011). Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 4790: 384–387 doi:10.1038/nature10588
25 G Lin, S Ho (2003). China’s land resources and land-use change: insights from the 1996 land survey. Land Use Policy, 20(2): 87–107
https://doi.org/10.1016/S0264-8377(03)00007-3
26 J Liu, J Diamond (2005). China’s environment in a globalizing world. Nature, 435(7046): 1179–1186
https://doi.org/10.1038/4351179a pmid: 15988514
27 J Liu, Z Zhang, X Xu (2009). Spatial patterns and driving forces of land use change in China in the early 21st century. Acta Geogr Sin, 64(12): 1411–1420
28 J F Mas, H Puig, J L Palacio, A Sosa-Lo’pez (2004). Modelling deforestation using GIS and artificial neural networks. Environ Model Softw, 19(5): 461–471
https://doi.org/10.1016/S1364-8152(03)00161-0
29 R Moss, J Edmonds, K Hibbard, M R Manning, S K Rose, D P van Vuuren, T R Carter, S Emori, M Kainuma, T Kram, G A Meehl, J F B Mitchell, N Nakicenovic, K Riahi, S J Smith, R J Stouffer, A M Thomson, J P Weyant, T J Wilbanks (2010). The nest generation of scenarios for climate change research and assessment. Nature, 463(7282): 747–756
https://doi.org/10.1038/nature08823
30 R Muetzelfeldt, J Massheder (2003). The Simile visual modelling environment. Eur J Agron, 18(3–4): 345–358
https://doi.org/10.1016/S1161-0301(02)00112-0
31 K P Overmars, P H Verburg, T Veldkamp (2007). Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land Use Policy, 24(3): 584–599
https://doi.org/10.1016/j.landusepol.2005.09.008
32 F W T Penning de Vries, H van Keulen, R Rabbinge (1995). Natural resources and limits to food production in 2040. In: Eco-regional Approaches for Sustainable Land Use and Food Production, 12–16 December 1994. Kluwer Academic Publishers, 65–87
33 B C Pijanowski, K T Alexandridis, D Müller (2006). Modelling urbanization patterns in two diverse regions of the world. J Land Use Sci, 1(2–4): 83–108
https://doi.org/10.1080/17474230601058310
34 B C Pijanowski, S H Gage, D T Long, W E Cooper (2000). A land transformation model for the Saginaw Baywatershed. In: J Sanderson, L D Harris, eds. Landscape Ecology: A Top Down Approach. Boca Raton: Lewis Publishing, 708pp
35 R G Pontius Jr, J D Cornell, C A S Hall (2001). Modeling the spatial pattern of land-use change with GEOMOD2: application and validation. Agric Ecosyst Environ, 85(1–3): 191–203
https://doi.org/10.1016/S0167-8809(01)00183-9
36 S Pourebrahim, M Hadipour, Bin M Mokhtar (2011). Integration of spatial suitability analysis for land use planning in coastal areas; case of Kuala Langat District, Selangor, Malaysia. Landsc Urban Plan, 101(1): 84–97
https://doi.org/10.1016/j.landurbplan.2011.01.007
37 R Rabbinge, H C van Latesteijn (1992). Long-term options for land use in the European Community. Agric Syst, 40(1–3): 195–210
https://doi.org/10.1016/0308-521X(92)90021-F
38 R R Rindfuss, B Entwisle, S J Walsh, L An, N Badenoch, D G Brown, P Deadman, T P Evans, J Fox, J Geoghegan, M Gutmann, M Kelly, M Linderman, J Liu, G P Malanson, C F Mena, J P Messina, E F Moran, D C Parker, W Parton, P Prasartkul, D T Robinson, Y Sawangdee, L K Vanwey, P H Verburg (2008). Land use change: complexity and comparisons. J Land Use Sci, 3(1): 1–10
https://doi.org/10.1080/17474230802047955 pmid: 20354590
39 C J E Schulp, G J Nabuurs, P H Verburg (2008). Future carbon sequestration in Europe—effects of land use change. Agric Ecosyst Environ, 127(3–4): 251–264
https://doi.org/10.1016/j.agee.2008.04.010
40 B S Soares-Filho, D C Nepstad, L M Curran, G C Cerqueira, R A Garcia, C A Ramos, E Voll, A McDonald, P Lefebvre, P Schlesinger (2006). Modelling conservation in the Amazon basin. Nature, 440(7083): 520–523
https://doi.org/10.1038/nature04389 pmid: 16554817
41 T L Sohl, K L Sayler, M A Drummond, T R Loveland (2007). The FORE-SCE model: a practical approach for projecting land cover change using scenario-based modeling. J Land Use Sci, 2(2): 103–126
https://doi.org/10.1080/17474230701218202
42 F Tao, M Yokozawa, Z Zhang (2009). Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis. Agric Meteorol, 149(5): 831–850
https://doi.org/10.1016/j.agrformet.2008.11.004
43 C Tebaldi, D B Lobell (2008). Towards probabilistic projections of climate change impacts on global crop yields. Geophys Res Lett, 35(8): L08705
https://doi.org/10.1029/2008GL033423
44 F V Tongeren (2008). Agricultural Policy Design and Implementation: A Synthesis. OECD Food, Agriculture and Fisheries Working Papers, 7: doi:10.1787/243786286663
45 F V Tongeren, H V Meijl, Y Surry (2001). Global models applied to agricultural and trade policies: a review and assessment. Agric Econ, 26(2): 149–172
https://doi.org/10.1111/j.1574-0862.2001.tb00060.x
46 B L Turner 2nd, E F Lambin, A Reenberg (2007). The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci USA, 104(52): 20666–20671
https://doi.org/10.1073/pnas.0704119104 pmid: 18093934
47 A Veldkamp, L O Fresco (1996). CLUE-CR: an integrated multi-scale model to simulate land use change scenarios in Costa Rica. Ecol Modell, 91(1–3): 231–248
https://doi.org/10.1016/0304-3800(95)00158-1
48 P H Verburg, B Eickhout, H V Meijl (2008). A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann Reg Sci, 42(1): 57–77
https://doi.org/10.1007/s00168-007-0136-4
49 P H Verburg, K P Overmars (2009). Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape Ecol, 24(9): 1167–1181
https://doi.org/10.1007/s10980-009-9355-7
50 P H Verburg, P P Schot, M J Dijst, A Veldkamp (2004). Land use change modelling: current practice and research priorities. Geol J, 61: 309–324
51 P H Verburg, C J E Schulp, N Witte, A Veldkamp (2006). Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric Ecosyst Environ, 114(1): 39–56
https://doi.org/10.1016/j.agee.2005.11.024
52 P H Verburg, W Soepboer, A Veldkamp, R Limpiada, V Espaldon, S S Mastura (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manage, 30(3): 391–405
https://doi.org/10.1007/s00267-002-2630-x pmid: 12148073
53 P H Verburg, J van de Steeg, A Veldkamp, L Willemen (2009). From land cover change to land function dynamics: a major challenge to improve land characterization. J Environ Manage, 90(3): 1327–1335
https://doi.org/10.1016/j.jenvman.2008.08.005 pmid: 18809242
54 P H Verburg, G H J de Koning, K Kok, A Veldkamp, J Bouma (1999). A spatial explicit allocation procedure for modeling the pattern of land use change based upon actual land use. Ecol Modell, 116(1): 45–61
https://doi.org/10.1016/S0304-3800(98)00156-2
55 P H Verburg, K H Erb, O Mertz, G Espindola (2013) Land System Science: between global challenges and local realities. Current Opinion in Environmental Sustainability, 5(5): 433–437
56 W B Wu, P Yang, H J Tang (2007). Regional variability of efects of land use system on soil properties. Scientia Agricultura Sinica, 2007, 40(8): 1697–1702
57 X Xu, Q Gao, Y H Liu, J A Wang, Y Zhang (2009). Coupling a land use model and an ecosystem model for a crop-pasture zone. Ecol Modell, 220(19): 2503–2511
https://doi.org/10.1016/j.ecolmodel.2009.04.043
[1] Jing ZHU, Yi LU, Fumin REN, John L McBRIDE, Longbin YE. Typhoon disaster risk zoning for China’s coastal area[J]. Front. Earth Sci., 2022, 16(2): 291-303.
[2] Dongliang ZHANG, Yunpeng YANG, Min RAN, Bo LAN, Hongyan ZHAO, Qi LIU. Vegetation dynamics and its response to climate change during the past 2000 years in the Altai Mountains, northwestern China[J]. Front. Earth Sci., 2022, 16(2): 513-522.
[3] Shikui GAO, Quanzhong GUAN, Dazhong DONG, Fang HUANG. Environmental risks of shale gas exploitation and solutions for clean shale gas production in China[J]. Front. Earth Sci., 2021, 15(2): 406-422.
[4] Jiancheng QIN, Buda SU, Hui TAO, Yanjun WANG, Jinlong HUANG, Tong JIANG. Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China[J]. Front. Earth Sci., 2021, 15(1): 23-37.
[5] Ying LIU, Xudong WU, Xudong SUN, Chenghe GUAN, Bo ZHANG, Xiaofang WU. Exports-driven primary energy requirements and the structural paths of Chinese regions[J]. Front. Earth Sci., 2020, 14(4): 803-815.
[6] Kaixiu ZHANG, Wen QIN, Fang TIAN, Xianyong CAO, Yuecong LI, Jule XIAO, Wei DING, Ulrike HERZSCHUH, Qinghai XU. Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China[J]. Front. Earth Sci., 2020, 14(4): 789-802.
[7] Baofu LI, Jili ZHENG, Xun SHI, Yaning CHEN. Quantifying the impact of mountain precipitation on runoff in Hotan River, northwestern China[J]. Front. Earth Sci., 2020, 14(3): 568-577.
[8] KuoRay MAO, Qian ZHANG, Yongji XUE, Nefratiri WEEKS. Toward a socio-political approach to water management: successes and limitations of IWRM programs in rural north-western China[J]. Front. Earth Sci., 2020, 14(2): 268-285.
[9] Yang DING, Zhigang YAO, Lingling ZHOU, Min BAO, Zhengchen ZANG. Numerical modeling of the seasonal circulation in the coastal ocean of the Northern South China Sea[J]. Front. Earth Sci., 2020, 14(1): 90-109.
[10] Chao FU, Xinghe YU, Xue FAN, Yulin HE, Jinqiang LIANG, Shunli LI. Classification of mass-transport complexes and distribution of gashydrate-bearing sediments in the northeastern continental slope of the South China Sea[J]. Front. Earth Sci., 2020, 14(1): 25-36.
[11] Kun JIA, Jingcan LIU, Yixuan TU, Qiangzi LI, Zhiwei SUN, Xiangqin WEI, Yunjun YAO, Xiaotong ZHANG. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain[J]. Front. Earth Sci., 2019, 13(2): 327-335.
[12] Fenliang LIU, Hongshan GAO, Baotian PAN, Zongmeng LI, Huai SU. Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region, Southwest China[J]. Front. Earth Sci., 2019, 13(1): 55-74.
[13] Jincui WANG, Yongsheng ZHAO, Jichao SUN, Ying ZHANG, Chunyan LIU. The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China[J]. Front. Earth Sci., 2019, 13(1): 33-42.
[14] Zhuang LI, Bin CHEN. Lithotectonic elements of Archean basement on the Liaodong Peninsula and its vicinity, North China Craton, China[J]. Front. Earth Sci., 2019, 13(1): 209-228.
[15] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed