Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2014, Vol. 8 Issue (2) : 264-281    https://doi.org/10.1007/s11707-014-0424-0
RESEARCH ARTICLE
Parameter identification and calibration of the Xin’anjiang model using the surrogate modeling approach
Yan YE1,5,Xiaomeng SONG2,3,*(),Jianyun ZHANG2,3,Fanzhe KONG4,Guangwen MA5
1. College of Resources and Environment, Southwest University, Chongqing 400716, China
2. State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
3. Research Center for Climate Change, the Ministry of Water Resources, Nanjing 210029, China
4. School of Resource and Earth Science, China University of Mining & Technology, Xuzhou 221008, China
5. College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
 Download: PDF(876 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Practical experience has demonstrated that single objective functions, no matter how carefully chosen, prove to be inadequate in providing proper measurements for all of the characteristics of the observed data. One strategy to circumvent this problem is to define multiple fitting criteria that measure different aspects of system behavior, and to use multi-criteria optimization to identify non-dominated optimal solutions. Unfortunately, these analyses require running original simulation models thousands of times. As such, they demand prohibitively large computational budgets. As a result, surrogate models have been used in combination with a variety of multi-objective optimization algorithms to approximate the true Pareto-front within limited evaluations for the original model. In this study, multi-objective optimization based on surrogate modeling (multivariate adaptive regression splines, MARS) for a conceptual rainfall-runoff model (Xin’anjiang model, XAJ) was proposed. Taking the Yanduhe basin of Three Gorges in the upper stream of the Yangtze River in China as a case study, three evaluation criteria were selected to quantify the goodness-of-fit of observations against calculated values from the simulation model. The three criteria chosen were the Nash-Sutcliffe efficiency coefficient, the relative error of peak flow, and runoff volume (REPF and RERV). The efficacy of this method is demonstrated on the calibration of the XAJ model. Compared to the single objective optimization results, it was indicated that the multi-objective optimization method can infer the most probable parameter set. The results also demonstrate that the use of surrogate-modeling enables optimization that is much more efficient; and the total computational cost is reduced by about 92.5%, compared to optimization without using surrogate modeling. The results obtained with the proposed method support the feasibility of applying parameter optimization to computationally intensive simulation models, via reducing the number of simulation runs required in the numerical model considerably.

Keywords Xin’anjiang model      parameter calibration      multi-objective optimization      surrogate modeling     
Corresponding Author(s): Xiaomeng SONG   
Issue Date: 24 June 2014
 Cite this article:   
Yan YE,Xiaomeng SONG,Jianyun ZHANG, et al. Parameter identification and calibration of the Xin’anjiang model using the surrogate modeling approach[J]. Front. Earth Sci., 2014, 8(2): 264-281.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0424-0
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I2/264
Fig.1  Distribution of rain station, drainage network, and sub-catchments of Yanduhe catchment.
Rain stationLatitude and longitudeArea/km2Weight of areaNumber of reachSlopeDistance to watershed outlet/km
Banqiao110.15°E, 31.40°N67.150.1140.57130.18
Xiagu110.23°E, 31.37°N163.250.2820.68319.84
Duizi110.27°E, 31.30°N98.60.1620.7117.88
Songziyuan110.40°E, 31.33°N1290.2130.6037.88
Yanduhe110.30°E, 31.20°N143.240.2400.5760.96
Tab.1  Characteristics of each sub-catchment
Fig.2  Flowchart for the XAJ model.
Parameter TypeSymbolPhysical meaningRange and units
EvapotranspirationKRatio of potential evapotranspiration to pan evaporation0.2–1.0
UMAveraged soil moisture storage capacity of the upper layer20–30 (mm)
LMAveraged soil moisture storage capacity of the lower layer60–90 (mm)
DMAveraged soil moisture storage capacity of the deeper layer10–100 (mm)
CCoefficient of the deeper layer0.05–0.2
Runoff generationWMAreal mean tension water capacity100–150 (mm)
BExponential of the distribution to tension water capacity0.1–0.4
IMPercentage of impervious and saturated areas in the catchment0.01–0.02
Runoff separationSMAreal mean free water capacity of the surface soil layer5–50 (mm)
EXExponent of the free water capacity curve1–1.5
KIOutflow coefficients of the free water storage to interflow relationshipsKI+KG=0.7
KGOutflow coefficients of the free water storage to groundwater relationships
Runoff routingCSRecession constant in the lag and route method0.01–0.9
CIRecession constant of the lower interflow storage0.01–0.95
CGRecession constant of the groundwater storage0.9–0.999
LLag in time empirical value0–3 (h)
KEMuskingum routing method parameterDt
XEMuskingum routing method parameter0–0.5
Tab.2  Ranges and physical meaning of parameters for the XAJ model
Fig.3  Flowchart of the meta-model-based optimization for the XAJ model.
Fig.4  Response surface plots for the three objective responses with parameters K and SM.
Fig.5  Cross-validation for the surrogate modeling.
Fig.6  Validation and test for the surrogate modeling.
SchemeKWMSMKI(KG)CSCICGKEXE
NSE (optimum)0.52132450.17(0.53)0.790.630.970.790.17
REPF (optimum)0.37149330.40(0.30)0.380.790.991.400.18
RERV (optimum)0.75131400.52(0.18)0.240.880.930.650.12
Tab.3  Optimization results for ten parameters
Fig.7  Comparison of single-objective optimal value using surrogate modeling.
Performance ratingNSEAbsolute value of REPFAbsolute value of RERV
Very good≥0.90≤5%≤5%
Good0.80–0.905%–10%5%–10%
Acceptable0.70–0.8010%–20%10%–20%
Unsatisfactory<0.70>20%>20%
Tab.4  Criteria for the goodness-of-fit evaluation
Fig.8  Illustration of estimated Pareto front for the optimization of a three-objective function attained across surrogate modeling. The black arrows indicate direction of increasing preference. Marked optimal point corresponds to using a balanced aggregated objective function.
Fig.9  Normalized range of parameter values along the Pareto front shown in Fig. 8.
Fig.10  Hydrograph prediction uncertainty ranges associated with the Pareto solution set estimated from the surrogate modeling: (a)–(j) for the 10 flood events in the calibration, and (k)–(o) for the 5 flood events in the validation. Black solid lines indicate the observed hydrograph for 15 flood events. Short dash dot lines indicate the simulated hydrograph based on the optimization of balanced aggregated function. Black columns indicate the precipitation. Shaded area indicates the simulated hydrograph from Pareto front for three-objective function.
Fig.11  Scatter plots of observed and simulated discharge with optimization based on balanced aggregated function.
1 AkhtarM, AhmadN, BooijM J (2008). The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. J Hydrol (Amst), 355(1–4): 148–163
doi: 10.1016/j.jhydrol.2008.03.015
2 BehzadianK, KapelanZ, SavicD, ArdeshirA (2009). Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks. Environ Model Softw, 24(4): 530–541
doi: 10.1016/j.envsoft.2008.09.013
3 BennettD A, XiaoN C, ArmstrongM P (2004). Exploring the geographic consequences of public policies using evolutionary algorithms. Ann Assoc Am Geogr, 94(4): 827–847
4 BevenK, FreerJ (2001). Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology. J Hydrol (Amst), 249(1–4): 11–29
doi: 10.1016/S0022-1694(01)00421-8
5 BevenK J (2006). A manifesto for the equifinality thesis. J Hydrol, 320: 18–36
6 BingemanA, KouwenN, SoulisE D (2006). Validation of hydrological processes in a hydrological model. J Hydrol Eng, 11(5): 451–463
doi: 10.1061/(ASCE)1084-0699(2006)11:5(451)
7 BiondiD, FreniG, IacobellisV, MascaroG, MontanariA (2012). Validation of hydrological models: conceptual basis, methodological approaches and a proposal for a code of practice. Phys Chem Earth A/B/C, 42–44: 70–76
8 BliznyukN, RuppertD, ShoemakerC, RegisR, WildS, MugunthanP (2008). Bayesian calibration and uncertainty analysis for computationally expensive models using optimization and radial basis function approximation. J Comput Graph Statist, 17(2): 270–294
doi: 10.1198/106186008X320681
9 BroadD R, DandyG C, MaierH R (2005). Water distribution system optimization using metamodels. J Water Resour Plan Manage, 131(3): 172–180
doi: 10.1061/(ASCE)0733-9496(2005)131:3(172)
10 BroadD R, MaierH R, DandyG C (2010). Optimal operation of complex water distribution systems using metamodels. J Water Resour Plan Manage, 136(4): 433–443
doi: 10.1061/(ASCE)WR.1943-5452.0000052
11 CaoK, BattyM, HuangB, LiuY, YuL, ChenJ F (2011). Spatial multi-objective land use optimization: extensions to the non-dominated sorting genetic algorithm-II. Int J Geogr Inf Sci, 25(12): 1949–1969
doi: 10.1080/13658816.2011.570269
12 ClarkM P, McMillanH K, CollinsD B G, KavetskiD, WoodsR A (2011). Hydrological field data from a modeller’s perspective.Part 2: process-based evaluation of model hypotheses. Hydrol Processes, 25(4): 523–543
doi: 10.1002/hyp.7902
13 de VosN J, RientjesT H M (2008). Multiobjective training of artificial neural networks for rainfall-runoff modeling. Water Resour Res, 44(8): W08434, doi: 10.1029/2007WR006734
14 di PierroF, KhuS T, SavicD, BerardiL (2009). Efficient multi-objective optimal design of water distribution networks on a budget of simulations using hybrid algorithms. Environ Model Softw, 24(2): 202–213
doi: 10.1016/j.envsoft.2008.06.008
15 DuanQ Y, SorooshianS, GuptaV (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res, 28(4): 1015–1031
doi: 10.1029/91WR02985
16 DumedahG (2012). Formulation of the evolutionary-based data assimilation, and its implementation in hydrological forecasting. Water Resour Manage, 26(13): 3853–3870
doi: 10.1007/s11269-012-0107-0
17 DumedahG, BergA A, WinebergM, CollierR (2010). Selecting model parameter sets from a trade-off surface generated from the non-dominated sorting genetic algorithm-II. Water Resour Manage, 24(15): 4469–4489
doi: 10.1007/s11269-010-9668-y
18 DunnS M, FreerJ, WeilerM, KirkbyM J, SeibertJ, QuinnP F, LischeidG, TetzlaffD, SoulsbyC (2008). Conceptualization in catchment modeling: simply learning?Hydrol Processes, 22(13): 2389–2393
doi: 10.1002/hyp.7070
19 FeniciaF, SavenijeH H G, MatgenP, PfisterL (2008). Understanding catchment behavior through stepwise model concept improvement. Water Resour Res, 44(1): W01402, doi: 10.1029/2006WR005563
20 FriedmanJ H (1991). Multivariate adaptive regression splines. Ann Stat, 19(1): 1–67
doi: 10.1214/aos/1176347963
21 GanT Y, BiftuG F (1996). Automatic calibration of conceptual rainfall-runoff models: optimization algorithm, catchment conditions, and model structure. Water Resour Res, 32(12): 3513–3524
doi: 10.1029/95WR02195
22 GoelT, VaidyanathanR, HaftkaR T, ShyyW, QueipoN V, TuckerK (2007). Response surface approximation of Pareto optimal front in multi-objective optimization. Comput Methods Appl Mech Eng, 196(4–6): 879–893
doi: 10.1016/j.cma.2006.07.010
23 GuoJ, ZhouJ, ZouQ, SongL, ZhangY (2013b). Study on multi-objective parameter optimization of Xin’anjiang model. Journal of China Hydrology, 33(1): 1–7 (in Chinese)
24 GuoJ, ZhouJ Z, ZouQ, LiuY, SongL (2013a). A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization. Water Resour Manage, 27(8): 2923–2946
doi: 10.1007/s11269-013-0324-1
25 GutmannH M (2001). A radial basis function method for global optimization. J Glob Optim, 19(3): 201–227
doi: 10.1023/A:1011255519438
26 HuangK, LiuX, LiX, LiangJ, HeS (2013). An improved artificial immune system for seeking the Pareto front of land-use allocation problem in large areas. Int J Geogr Inf Sci, 27(5): 922–946
doi: 10.1080/13658816.2012.730147
27 JiangY, LiX Y, HuangC C (2013). Automatic calibration a hydrological model using a master-slave swarms shuffling evolution algorithm based on self-adaptive particle swarm optimization. Expert Syst Appl, 40(2): 752–757
doi: 10.1016/j.eswa.2012.08.006
28 JonesD R, SchonlauM, WelchW (1998). Efficient global optimization of expensive black-box functions. J Glob Optim, 13(4): 455–492
doi: 10.1023/A:1008306431147
29 JonesJ P, SudickyE A, McLarenR G (2008). Application of a fully-integrated surface-subsurface flow model at the watershed-scale: a case study. Water Resour Res, 44(3): W03407, doi: 10.1029/2006WR005603
30 KavetskiD, ClarkM P (2011). Numerical troubles in conceptual hydrology: approximations, absurdities, and impact on hypothesis-testing. Hydrol Processes, 25(4): 661–670
doi: 10.1002/hyp.7899
31 KavetskiD, KuczeraG, FranksS W (2006). Bayesian analysis of input uncertainty in hydrological modeling: 1.theory. Water Resour Res, 42: W03407, doi: 10.1029/2005WR004368
32 KhuS T, MadsenH (2005). Multiobjective calibration with Pareto preference ordering: an application to rainfall-runoff model calibration. Water Resour Res, 41(3): W03004, doi: 10.1029/2004WR003041
33 KhuS T, WernerM G F (2003). Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modeling. Hydrol Earth Syst Sci, 7(5): 680–692
doi: 10.5194/hess-7-680-2003
34 KongF Z, LiL L (2006). Application of digital elevation model in Xinanjiang model. Journal of China University of Mining & Technology, 35(3): 393–396 (in Chinese)
35 KourakosG, MantoglouA (2009). Pumping optimization of coastal aquifers based on evolutionary algorithms and surrogate modular neural network models. Adv Water Resour, 32(4): 507–521
doi: 10.1016/j.advwatres.2009.01.001
36 LeeK T, HungW C, MengC C (2008). Deterministic insight into ANN model performance for storm runoff simulation. Water Resour Manage, 22(1): 67–82
doi: 10.1007/s11269-006-9144-x
37 LiH, ZhangY, ChiewF H S, XuS (2009). Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. J Hydrol (Amst), 370(1–4): 155–162
doi: 10.1016/j.jhydrol.2009.03.003
38 LindströmG, JohannsonB, PerssonM, GardelinM, BergströmS (1997). Development and test of the distributed HBV-96 hydrological model. J Hydrol (Amst), 201(1–4): 272–288
doi: 10.1016/S0022-1694(97)00041-3
39 LiuD, YuZ, HaoZ, YangC, JuQ (2007). Groundwater simulation in the Yangtze River basin with a coupled climate-hydrologic model. Journal of China University of Geosciences, 18(Special issue): 155–157
40 LüH S, HouT, HortonR, ZhuY, ChenX, JiaY, WangW, FuX (2013). The streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter estimation method. J Hydrol (Amst), 480: 102–114
doi: 10.1016/j.jhydrol.2012.12.011
41 MadsenH (2000). Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. J Hydrol (Amst), 235(3–4): 276–288
doi: 10.1016/S0022-1694(00)00279-1
42 McCabeM F, FranksS W, KalmaJ D (2005). Calibration of a land surface model using multiple data sets. J Hydrol (Amst), 302(1–4): 209–222
doi: 10.1016/j.jhydrol.2004.07.002
43 McIntyreN, Al-QurashiA (2009). Performance of ten rainfall-runoff models applied to an arid catchment in Oman. Environ Model Softw, 24(6): 726–738
doi: 10.1016/j.envsoft.2008.11.001
44 McLachlanG J, DoK-A, AmbroiseC (2004). Analyzing Microarray Gene Expression Data. Hoboken, New Jersey: John Wiley & Sons, Int, 213–216
45 McMillanH K, ClarkM P, BowdenW B, DuncanM, WoodsR A (2011). Hydrological field data from a model’s perspective.Part 1: diagnostic tests for model structure. Hydrol Processes, 25(4): 511–522
doi: 10.1002/hyp.7841
46 MoriasiD N, ArnoldJ G, Van LiewM W, BingnerR L, HarmelR D, VeithT L (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE, 50(3): 885–900
doi: 10.13031/2013.23153
47 MugunthanP, ShoemakerC A (2006). Assessing the impacts of parameter uncertainty for computationally expensive groundwater models. Water Resour Res, 42(10): W10428, doi: 10.1029/2005WR004640
48 NashJ E, SutcliffeJ V (1970). River flow forecasting through conceptual models part I — A discussion of principles. J Hydrol (Amst), 10(3): 282–290
doi: 10.1016/0022-1694(70)90255-6
49 PushpalathaR, PerrinC, MoineN L, AndréassianV (2012). A review of efficiency criteria suitable for evaluating low-flow simulations. J Hydrol (Amst), 420–421: 171–182
doi: 10.1016/j.jhydrol.2011.11.055
50 QuS, BaoW, ShiP, YuZ, LiP, ZhangB, JiangP (2012). Evaluation of runoff responses to land use changes and land cover changes in the upper Huaihe river basin, China. J Hydrol Eng, 17(7): 800–806
doi: 10.1061/(ASCE)HE.1943-5584.0000397
51 QuirósE, FelicísimoÁ M, CuarteroA (2009). Testing multivariate adaptive regression splines (MARS) as a method of land cover classification of TERRA-ASTER satellite images. Sensors (Basel), 9(11): 9011–9028
doi: 10.3390/s91109011 pmid: 22291550
52 RazaviS (2013). Developing efficient strategies for automatic calibration of computationally intensive environmental models. Thesis of University of Waterloo, Waterloo, Ontario, Canada
53 RazaviS, TolsonB A, BurnD H (2012). Review of surrogate modeling in water resources. Water Resour Res, 48(7): W07401, doi: 10.1029/2011WR011527
54 ReedP, MinskerB S, GoldbergD E (2003). Simplifying multi-objective optimization: an automated design methodology for the nondominated sorted genetic algorithm–II. Water Resour Res, 39(7): 1196, doi: 10.1029/2002WR001483
55 RegisR G, ShoemakerC A (2007). A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J Comput, 19(4): 497–509
doi: 10.1287/ijoc.1060.0182
56 ReichertP, WhiteG, BayarriM J, PitmanE B (2011). Mechanism-based emulation of dynamic simulation models: concept and application in hydrology. Comput Stat Data Anal, 55(4): 1638–1655
doi: 10.1016/j.csda.2010.10.011
57 RitterA, Muñoz-CarpenaR (2013). Performance evaluation of hydrological models: statistical significance for reducing subjectivity in goodness-of-fit assessments. J Hydrol (Amst), 480: 33–45
doi: 10.1016/j.jhydrol.2012.12.004
58 SinghS K, BárdossyA (2012). Calibration of hydrological models on hydrologically unusual events. Adv Water Resour, 38: 81–91
doi: 10.1016/j.advwatres.2011.12.006
59 SkaggsT H, BarryD A (1997). The first-order reliability method of predicting cumulative mass flux in heterogeneous porous formations. Water Resour Res, 33(6): 1485–1494
doi: 10.1029/97WR00660
60 SongX, KongF (2010). Application of Xin’anjiang model coupling with artificial neural networks. Bulletin of Soil and Water Conservation, 30(6): 135–138 (in Chinese)
61 SongX, KongF, ZhanC, HanJ (2012a). Sensitivity analysis of hydrological model parameter using a statistical theory approach. Advances in Water Science, 23(5): 642–649 (in Chinese)
62 SongX, KongF, ZhanC, HanJ (2012b). Hybrid optimization rainfall-runoff simulation based on Xin’anjiang model and artificial neural network. J Hydrol Eng, 17(9): 1033–1041
doi: 10.1061/(ASCE)HE.1943-5584.0000548
63 SongX, KongF, ZhanC, HanJ, ZhangX (2013). Parameter identification and global sensitivity analysis of Xin’anjiang model using meta-modeling approach. Water Sci Eng, 6(1): 1–17
64 SongX, ZhanC, KongF, XiaJ (2011). Advances in the study of uncertainty quantification of large-scale hydrological modeling system. J Geogr Sci, 21(5): 801–819
doi: 10.1007/s11442-011-0881-2
65 SongX, ZhanC, XiaJ (2012c). Integration of a statistical emulator approach with the SCE-UA method for parameter optimization of a hydrological model. Chin Sci Bull, 57(26): 3397–3403
doi: 10.1007/s11434-012-5305-x
66 SongX, ZhanC, XiaJ, KongF (2012d). An efficient global sensitivity analysis approach for distributed hydrological model. J Geogr Sci, 22(2): 209–222
doi: 10.1007/s11442-012-0922-5
67 SrinivasuluS, JainA (2006). A comparative analysis of training methods for artificial neural network rainfall-runoff models. Appl Soft Comput, 6(3): 295–306
doi: 10.1016/j.asoc.2005.02.002
68 TangY, ReedP, WagenerT (2006). How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?Hydrol Earth Syst Sci, 10(2): 289–307
doi: 10.5194/hess-10-289-2006
69 TrautmannH, RudolphG, Dominguez-MedinaC, SchutzeO (2013). Finding evenly spaced Pareto fronts for three-objective optimization problems. In: SchutzeO, CoelloC A, TantarA, TantarE, BouvryP, MoralP D, LegrandP eds. EVOLVE–A Bridge between Probability Set Oriented Numeric, And Evolutionary Computation II. Heidelberg: Springer-Verlag, 89–105
70 van WerkhovenK, WagenerT, ReedP, TangY (2009). Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Adv Water Resour, 32(8): 1154–1169
doi: 10.1016/j.advwatres.2009.03.002
71 VrugtJ A, GuptaH V, BastidasL, BoutenW, SorooshianS (2003b). Efficient and efficient algorithm for multiobjective optimization of hydrologic model. Water Resour Res, 39(8), doi: 10.1029/2002WR001746
72 VrugtJ A, GuptaH V, BoutenW, SorooshianS (2003a). A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters. Water Resour Res, 39(8), doi: 10.1029/2002WR001642
73 VrugtJ A, GuptaH V, NuallainB, BoutenW (2006). Real-time data assimilation for operational ensemble streamflow forecasting. J Hydrometeorol, 7(3): 548–565
doi: 10.1175/JHM504.1
74 WagnerT, EmmerichM, DeutzA, PonweiserW (2010). On expected-improvement criteria for model-based multi-objective optimization. In: SchaeferR, CottaC, KolodziejJ, RudolphG, ed. Parallel Problems Solving from Nature (PPSN) XI, Part I, LNCS 6238. Berlin: Springer, 718–727
75 WangQ J (1991). The genetic algorithm and its application to calibrating conceptual rainfall-runoff models. Water Resour Res, 27(9): 2467–2471
doi: 10.1029/91WR01305
76 WheaterH S (2002). Progress in and prospects for fluvial flood modeling. Phil Trans R Soc Lond A, 360(1796): 1409–1431
77 XuC Y (1999). Estimation of parameters of a conceptual water balance model for ungauged catchments. Water Resour Manage, 13(5): 353–368
doi: 10.1023/A:1008191517801
78 XuD M, WangW C, ChauK W, ChenC T, ChenS Y (2013). Comparison of three global optimization algorithms for calibration of the Xinanjiang model parameters. J HydroInf, 15(1): 174–193
doi: 10.2166/hydro.2012.053
79 YanS, MinskerB (2006). Optimal groundwater remediation design using an adaptive neural network genetic algorithm. Water Resour Res, 42, W05407, doi: 10.1029/2005WR004303
80 YanS, MinskerB (2011). Applying dynamic surrogate models in noisy genetic algorithms to optimize groundwater remediation designs. J Water Resour Plan Manage, 137(3): 284–292
doi: 10.1061/(ASCE)WR.1943-5452.0000106
81 YangX H, MeiY, SheD X, LiJ Q (2011b). Chaotic Bayesian optimal prediction method and its application in hydrological time series. Comput Math Appl, 61(8): 1975–1978
doi: 10.1016/j.camwa.2010.08.041
82 YangX H, SheD X, YangZ F, TangQ H, LiJ Q (2009). Chaotic Bayesian method based on multiple criteria decision making (MCDM) for forecasting nonlinear hydrological time series. International Journal of Nonlinear Sciences and Numerical Simulation, 10(11–12): 1595–1610
83 YangX H, ZhangX J, HuX X, YangZ F, LiJ Q (2011a). Nonlinear optimization set pair analysis model (NOSPAM) for assessing water resource renewability. Nonlinear Process Geophys, 18(5): 599–607
doi: 10.5194/npg-18-599-2011
84 YaoC, LiZ, YuZ, ZhangK (2012). A prior parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information. J Hydrol (Amst), 468–469: 47–62
doi: 10.1016/j.jhydrol.2012.08.025
85 YapoP O, GuptaH V, SorooshianS (1998). Multi-objective global optimization for hydrologic models. J Hydrol (Amst), 204(1–4): 83–97
doi: 10.1016/S0022-1694(97)00107-8
86 YuZ, LüH, ZhuY, DrakeS, LiangC (2010). Long-term effects of vegetation on soil hydrological processes in vegetation-stabilized desert ecosystem. Hydrol Processes, 24(1): 87–95
doi: 10.1002/hyp.7472
87 ZhanC S, SongX M, XiaJ, TongC (2013). An efficient integrated approach for global sensitivity analysis of hydrological model parameters. Environ Model Softw, 41: 39–52
doi: 10.1016/j.envsoft.2012.10.009
88 ZhangQ, LiuW, TsangE, VirginasB (2010). Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans Evol Comput, 14(3): 456–474
doi: 10.1109/TEVC.2009.2033671
89 ZhangX S, SrinivasanR, Van LiewM (2009). Approximating SWAT model using artificial neural network and support vector machine. J Am Water Resour Assoc, 45(2): 460–474
doi: 10.1111/j.1752-1688.2009.00302.x
90 ZhaoR J (1984). Watershed Hydrological Modeling. Beijing: Water Conservancy and Electric Power Press, 106–130(in Chinese)
91 ZhaoR J (1992). The Xin’anjiang model applied in China. J Hydrol (Amst), 135(1–4): 371–381
doi: 10.1016/0022-1694(92)90096-E
92 ZhaoR J, LiuX R (1995). The Xin’anjiang model. In: SinghV P ed. Computer Models of Watershed Hydrology. Colorado: Water Resources Publications, 215–232
93 ZouR, LungW S, WuJ (2007). An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling. Water Resour Res, 43(8): W08427, doi: 10.1029/2006WR005158
94 ZouR, LungW S, WuJ (2009). Multiple-pattern parameter identification and uncertainty analysis approach for water quality modeling. Ecol Modell, 220(5): 621–629
doi: 10.1016/j.ecolmodel.2008.11.021
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed