Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2014, Vol. 8 Issue (3) : 405-413    https://doi.org/10.1007/s11707-014-0432-0
RESEARCH ARTICLE
Sensitivity analysis for leaf area index (LAI) estimation from CHRIS/PROBA data
Jianjun CAO1,2, Zhujun GU2(), Jianhua XU1, Yushan DUAN1, Yongmei LIU2, Yongjuan LIU2, Dongliang LI2
1. The Key Laboratory of GIScience of the Education Ministry PRC, East China Normal University, Shanghai 200062, China
2. School of Bio-chemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
 Download: PDF(532 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sensitivity analyses were conducted for the retrieval of vegetation leaf area index (LAI) from multi-angular imageries in this study. Five spectral vegetation indices (VIs) were derived from Compact High Resolution Imaging Spectrometer onboard the Project for On Board Autonomy (CHRIS/PROBA) images, and were related to LAI, acquired from in situ measurement in Jiangxi Province, China, for five vegetation communities. The sensitivity of LAI retrieval to the variation of VIs from different observation angles was evaluated using the ratio of the slope of the best-fit linear VI-LAI model to its root mean squared error. Results show that both the sensitivity and reliability of VI-LAI models are influenced by the heterogeneity of vegetation communities, and that performance of vegetation indices in LAI estimation varies along observation angles. The VI-LAI models are more reliable for tall trees than for low growing shrub-grasses and also for forests with broad leaf trees than for coniferous forest. The greater the tree height and leaf size, the higher the sensitivity. Forests with broad-leaf trees have higher sensitivities, especially at oblique angles, while relatively simple-structured coniferous forests, shrubs, and grasses show similar sensitivities at all angles. The multi-angular soil and/or atmospheric parameter adjustments will hopefully improve the performance of VIs in LAI estimation, which will require further investigation.

Keywords CHRIS/PROBA      LAI      sensitivity      vegetation index      vegetation type     
Corresponding Author(s): Zhujun GU   
Issue Date: 04 July 2014
 Cite this article:   
Jianjun CAO,Zhujun GU,Jianhua XU, et al. Sensitivity analysis for leaf area index (LAI) estimation from CHRIS/PROBA data[J]. Front. Earth Sci., 2014, 8(3): 405-413.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0432-0
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I3/405
1 J Verrelst, M E Schaepman, B Koetz, M Kneubuhler (2008). Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote sensing of environment, 112: 2341–2353
2 M Rautiainen, M Lang, M Mottus, A Kuusk, T Nilson, J Kuusk, T Lukk (2008). Multi-angular reflectance properties of a hemiboreal forest: an analysis using CHRIS PROBA data. Remote sensing of environment, 112(5): 2627–2642
3 W A Abdou, S H Pilorz, M C Helmlinger, J E Conel, D J Diner, C J Bruegge, J V Martonchik, C K Gatebe, M D King, P V Hobbs (2006). Sua pan surface bidirectional reflectance: a case study to evaluate the effect of atmospheric correction on the surface products of the Multi-angle Imaging Spectro Radiometer (MISR) during SAFARI 2000. IEEE Trans Geosci Rem Sens, 44(7): 1699–1706
https://doi.org/10.1109/TGRS.2006.876031
4 F Baret, G Guyot (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ, 35(2−3): 161–173
https://doi.org/10.1016/0034-4257(91)90009-U
5 G B Bonan (1995). Land-atmosphere interactions for climate system models: coupling biophysical, biogeochemical, and ecosystem dynamical processes. Remote Sens Environ, 51(1): 57–73
https://doi.org/10.1016/0034-4257(94)00065-U
6 J M Chen, T A Black (1992). Defining leaf area index for non-flat leaves. Plant Cell Environ, 15(4): 421–429
https://doi.org/10.1111/j.1365-3040.1992.tb00992.x
7 J M Chen, G Pavlic, L Brown, J Cihlar, S G Leblac, H P White, R J Hall, D R Peddle, D J King, J A Trofymow, E Swift, J van der Sanden, P K E Pellikka (2002). Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high resolution satellite imagery and ground measurement. Remote Sens Environ, 80(1): 165–184
https://doi.org/10.1016/S0034-4257(01)00300-5
8 W B Cohen, T K Maiersperger, S T Gower, D P Turner (2003). An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sens Environ, 84(4): 561–571
https://doi.org/10.1016/S0034-4257(02)00173-6
9 R Colombo, B Dario, F Dante, M M Carlo (2003). Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens Environ, 86(1): 120–131
https://doi.org/10.1016/S0034-4257(03)00094-4
10 R Darvishzadeh, A Skidmore, M Schlerf, C Atzberger (2008). Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens Environ, 112(5): 2592–2604
https://doi.org/10.1016/j.rse.2007.12.003
11 A W Duan (1996). Measuring leaf area index of crop colony. Irrigation and Drainage Systems, 15: 50–53
12 E J Hyer, S J Goetz (2004). Comparison and sensitivity analysis of instruments and radiometric methods for LAI estimation: assessments from a boreal forest site. Agric Meteorol, 122(3−4): 157–174
https://doi.org/10.1016/j.agrformet.2003.09.013
13 W J Fan, X R Xu, X C Liu, B Y Yan, Y K Cui (2010). Accurate LAI retrieval method based on PROBA/CHRIS data. Hydrol Earth Syst Sci, 14(8): 1499–1507
https://doi.org/10.5194/hess-14-1499-2010
14 R Fernandes, C Butson, S Leblanc, R Latifovic (2003). Landsat-5 TM and Landsat-7 ETM+ based accuracy assessment of leaf area index products for Canada derived from SPOT-4 VEGETATION data. Can J Rem Sens, 29(2): 241–258
https://doi.org/10.5589/m02-092
15 N Fernández, J M Paruelo, M Delibes (2010). Ecosystem functioning of protected and altered Mediterranean environments: a remote sensing classification in Doñana, Spain. Remote Sens Environ, 114(1): 211–220
https://doi.org/10.1016/j.rse.2009.09.001
16 S Ganguly, M A Schull, A Samanta, N V Shabanov, C Milesi, R R Nemani, Y Knyazikhin, R B Myneni (2008). Generating vegetation leaf area index earth system data record from multiple sensors. Part1: Theory. Remote Sens Environ, 112(12): 4333–4343
https://doi.org/10.1016/j.rse.2008.07.014
17 A Gonsamo, P Pellikka (2012). The sensitivity based estimation of leaf area index from spectral vegetation indices. ISPRS J Photogramm Remote Sens, 70: 15–25
https://doi.org/10.1016/j.isprsjprs.2012.03.009
18 S T Gower, C J Kucharik, J M Norman (1999). Direct and indirect estimation of leaf area index, fAPAR and net production of terrestrial ecosystem. Remote Sens Environ, 70(1): 29–51
https://doi.org/10.1016/S0034-4257(99)00056-5
19 Z J Gu, W M Ju, Y B Liu, D Q Li, W L Fan (2012). Applicability of spectral and spatial information from IKONOS-2 Imagery in retrieving Leaf Area Index of forests in the urban area of Nanjing, China. J Appl Remote Sens, 6(1): 063556-1
https://doi.org/10.1117/1.JRS.6.063556
20 Z J Gu, X Z Shi, L Li, D S Yu, L S Liu, W T Zhang (2011). Using multiple radiometric correction images to estimate leaf area index. Int J Remote Sens, 32(24): 9441–9454
https://doi.org/10.1080/01431161.2011.562251
21 J Heiskanen (2006). Tree cover and height estimation in the Fennoscandian tundra−taiga transition zone using multiangular MISR data. Remote Sens Environ, 103(1): 97–114
https://doi.org/10.1016/j.rse.2006.03.015
22 R Houborg, H Soegaard, E Boegh (2007). Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens Environ, 106(1): 39–58
https://doi.org/10.1016/j.rse.2006.07.016
23 Y F Jin, F Gao, C B Schaaf, X W Li, A H Strahler, C J Bruegge, J V Martonchik (2002). Improving MODIS surface BRDF/albedo retrieval with MISR multiangle observation. IEEE Trans Geosci Rem Sens, 40(7): 1593–1604
https://doi.org/10.1109/TGRS.2002.801145
24 Y J Kaufman, D Tanre (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. Geoscience and Remote Sensing, IEEE Transactions on, 30(2): 261–270
https://doi.org/10.1109/36.134076
25 D M McAllister, C A Valeo (2007). Robust new method for the remote estimation of LAI in montane and boreal forests. Int J Remote Sens, 28(8): 1891–1905
https://doi.org/10.1080/01431160600975311
26 A W Nolin (2004). Towards retrieval of forest cover density over snow from the Multi-angle Imaging SpectroRadiometer (MISR). Hydrol Processes, 18(18): 3623–3636
https://doi.org/10.1002/hyp.5803
27 R L Pearson, L D Miller (1972). Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Proceedings of the Eighth International symposium on Remote Sensing of the Environment, VIII: 1355–1379
28 B Pinty, J L Widlowski, N Gobron, M M Verstraete, D J Diner (2002). Uniqueness of multiangular measurements. I: an indicator of subpixel surface heterogeneity from MISR. IEEE Trans Geosci Rem Sens, 40(7): 1560–1573
https://doi.org/10.1109/TGRS.2002.801148
29 A Pocewicz, L A Vierling, L B Lentile, R Smith (2007). View angle effects on relationships between MISR vegetation indices and leaf area index in a recently burned ponderosa pine forest. Remote Sens Environ, 107(1−2): 322–333
https://doi.org/10.1016/j.rse.2006.06.019
30 J Qi, A Chehbouni, A R Huete, Y H Kerr, S Sorooshian (1994). A modified soil adjusted vegetation index. Remote Sens Environ, 48(2): 119–126
https://doi.org/10.1016/0034-4257(94)90134-1
31 M Rautiainen, P Stenberg, T Nilson, A Kuusk (2004). The effect of crown shape on the reflectance of coniferous stands. Remote Sens Environ, 89(1): 41–52
https://doi.org/10.1016/j.rse.2003.10.001
32 A J Richardson, C L Wiegand (1977). Distinguishing vegetation from soil background information. American Society for Photogrammetric and Remote Sensing, 43(12): 1541–1552
33 S Ringrose, W Matheson, P Wolski, P Huntsman-Mapila (2003). Vegetation cover trends along the Botswana Kalahari transect. J Arid Environ, 54(2): 297–317
https://doi.org/10.1006/jare.2002.1092
34 J W Rouse, R H Haas, J A Schell, D W Deering, J C Harlan (1974). Monitoring the vernal advancement of retrogradation of natural vegetation. Greenbelt, MD: NASA/GSFC (Type III, Final Report), 371
35 S W Running, R Nemani, D L Peterson, L E Band, D F Potts, L L Pierce, M A Spanner (1989). Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology, 70(4): 1090–1101
https://doi.org/10.2307/1941378
36 B Smith, W Knorr, J L Widlowski, B Pinty, N Gobron (2008). Combining remote sensing data with process modelling to monitor boreal conifer forest carbon balances. For Ecol Manage, 255(12): 3985–3994
https://doi.org/10.1016/j.foreco.2008.03.056
37 M Vohland, S Mader, W Dorigo (2010). Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT+SAIL. Int J Appl Earth Obs Geoinf, 12(2): 71–80
https://doi.org/10.1016/j.jag.2009.10.005
38 X X Wu, Z J Gu, H Luo, X Z Shi, D S Yu (2014). Analyzing forest effects on runoff and sediment production using Leaf Area Index. Journal of Mountain Science, 11(1): 119–130
https://doi.org/10.1007/s11629-2436-8
[1] Jianhong LIU, Clement ATZBERGER, Xin HUANG, Kejian SHEN, Yongmei LIU, Lei WANG. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
[2] Xue YU, Yue LI, Min XI, Fanlong KONG, Mingyue PANG, Zhengda YU. Ecological vulnerability analysis of Beidagang National Park, China[J]. Front. Earth Sci., 2019, 13(2): 385-397.
[3] Kun JIA, Jingcan LIU, Yixuan TU, Qiangzi LI, Zhiwei SUN, Xiangqin WEI, Yunjun YAO, Xiaotong ZHANG. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain[J]. Front. Earth Sci., 2019, 13(2): 327-335.
[4] Jicai NING, Zhiqiang GAO, Ran MENG, Fuxiang XU, Meng GAO. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta[J]. Front. Earth Sci., 2018, 12(2): 444-456.
[5] Yilei YU, Xianfang SONG, Yinghua ZHANG, Fandong ZHENG, Licai LIU. Impact of reclaimed water in the watercourse of Huai River on groundwater from Chaobai River basin, Northern China[J]. Front. Earth Sci., 2017, 11(4): 643-659.
[6] Libin CHEN, Zhifeng YANG, Haifei LIU. Sensitivity analysis for the total nitrogen pollution of the Danjiangkou Reservoir based on a 3-D water quality model[J]. Front. Earth Sci., 2017, 11(4): 609-619.
[7] Zhengjia LIU,Mei HUANG. Assessing spatio-temporal variations of precipitation-use efficiency over Tibetan grasslands using MODIS and in-situ observations[J]. Front. Earth Sci., 2016, 10(4): 784-793.
[8] Dengpan XIAO,Yanjun SHEN,He ZHANG,Juana P. MOIWO,Yongqing QI,Rende WANG,Hongwei PEI,Yucui ZHANG,Huitao SHEN. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions[J]. Front. Earth Sci., 2016, 10(3): 444-454.
[9] Peng LI, Luguang JIANG, Zhiming FENG, Sage SHELDON, Xiangming XIAO. Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China[J]. Front. Earth Sci., 2016, 10(2): 303-314.
[10] Fengshan LIU, Fulu TAO, Shenggong LI, Shuai ZHANG, Dengpan XIAO, Meng WANG. Energy partitioning and environmental influence factors in different vegetation types in the GEWEX Asian Monsoon Experiment[J]. Front. Earth Sci., 2014, 8(4): 582-594.
[11] Zhongsheng CHEN,Yaning CHEN. Effects of climate fluctuations on runoff in the headwater region of the Kaidu River in northwestern China[J]. Front. Earth Sci., 2014, 8(2): 309-318.
[12] Chao GAO, Jun LEI, Fengjun JIN. The classification and assessment of vulnerability of man-land system of oasis city in arid area[J]. Front Earth Sci, 2013, 7(4): 406-416.
[13] Ci SONG, Jiong SHU, Mandi ZHOU, Wei GAO. Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model[J]. Front Earth Sci, 2013, 7(4): 439-446.
[14] Lev SPIVAK, Irina VITKOVSKAYA, Madina BATYRBAYEVA, Alexey TEREKHOV. The experience of land cover change detection by satellite data[J]. Front Earth Sci, 2012, 6(2): 140-146.
[15] Jun HE, Teng MA, Yamin DENG, Hui YANG, Yanxin WANG. Environmental geochemistry of high arsenic groundwater at western Hetao plain, Inner Mongolia[J]. Front Earth Sci Chin, 2009, 3(1): 63-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed