Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (3) : 394-411    https://doi.org/10.1007/s11707-014-0437-8
RESEARCH ARTICLE
Determination of water flushing characteristics and their influencing factors on the Dahuofang Reservoir in China using an improved ECOMSED model
Ming ZHANG, Yongming SHEN()
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China
 Download: PDF(3064 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A three-dimensional hydrodynamic model with the capability to deal with changing land water boundaries was developed based on ECOMSED in this study. The model was configured to numerically study the water flushing characteristics of Dahuofang Reservoir in China through the determination of spatially distributed residence times. The model successfully reproduced the intra-annual water level variations, as well as the temporal evolution and spatial distribution of water temperature. Through a series of numerical experiments, it can be concluded that (1) the water flushing of the reservoir is both temporally and spatially variable; and (2) inflows and withdrawals are the decisive factors influencing the water flushing characteristics. Heat fluxes are the controlling factors of the water flushing of a strong stratified reservoir. Wind has the weakest effect, but it still should be considered in determination of reservoir water flushing characteristics.

Keywords numerical modeling      residence time      flushing      influence factor      Dahuofang Reservoir     
Corresponding Author(s): Yongming SHEN   
Online First Date: 14 November 2014    Issue Date: 20 July 2015
 Cite this article:   
Ming ZHANG,Yongming SHEN. Determination of water flushing characteristics and their influencing factors on the Dahuofang Reservoir in China using an improved ECOMSED model[J]. Front. Earth Sci., 2015, 9(3): 394-411.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0437-8
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I3/394
1 A K M Q Ahsan, A F Blumberg (1999). Three-dimensional hydrothermal model of Onondaga Lake, New York. J Hydraul Eng, 125(9): 912−923
https://doi.org/10.1061/(ASCE)0733-9429(1999)125:9(912)
2 J O Blanton, A J Garrett, J S Bollinger, D W Hayes, L D Koffman, J Amft, T Moore (2010). Transport and retention of a conservative tracer in an isolated creek-marsh system. Estuar Coast Shelf Sci, 87(2): 333−345
https://doi.org/10.1016/j.ecss.2010.01.010
3 A F Blumberg, G L Mellor (1987). A description of a three-dimensional coastal ocean circulation model. In: N S Heaps, ed. Three-Dimensional Coastal Ocean Models. Washington, DC: American Geophysical Union, 1−16
4 B Boehrer, M Schultze (2008). Stratification of lakes. Rev Geophys, 46(2): RG2005
https://doi.org/10.1029/2006RG000210
5 B Bolin, H Rodhe (1973). A note on the concepts of age distribution and transit time in natural reservoirs. Tellus, 25(1): 58−62
https://doi.org/10.1111/j.2153-3490.1973.tb01594.x
6 R A Camacho, J L Martin (2013). Hydrodynamic modeling of first-order transport timescales in the St. Louis Bay Estuary, Mississippi. J Environ Eng, 139(3): 317−331
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000647
7 G H Cavalcante, B Kjerfve, D A Feary (2012). Examination of residence time and its relevance to water quality within a coastal mega-structure: The Palm Jumeirah Lagoon. J Hydrol (Amst), 468−469: 111−119
https://doi.org/10.1016/j.jhydrol.2012.08.027
8 T Dabrowski, A Berry (2009). Use of numerical models for determination of best sampling locations for monitoring of large lakes. Sci Total Environ, 407(14): 4207−4219
https://doi.org/10.1016/j.scitotenv.2009.03.020
9 T Dabrowski, M Hartnett (2008). Modelling travel and residence times in the eastern Irish Sea. Mar Pollut Bull, 57(1−5): 41−46
https://doi.org/10.1016/j.marpolbul.2008.03.014
10 T Dabrowski, M Hartnett, A I Olbert (2012). Determination of flushing characteristics of the Irish Sea: a spatial approach. Comput Geosci, 45: 250−260
https://doi.org/10.1016/j.cageo.2011.11.023
11 A de Brauwere, B de Brye, S Blaise, E Deleersnijder (2011). Residence time, exposure time and connectivity in the Scheldt Estuary. J Mar Syst, 84(3−4): 85−95
https://doi.org/10.1016/j.jmarsys.2010.10.001
12 É M Delhez, É Deleersnijder (2012). Residence and exposure times: when diffusion does not matter. Ocean Dyn, 62(10−12): 1399−1407
https://doi.org/10.1007/s10236-012-0568-y
13 D Dionne, N Therien (1997). Minimizing environmental impacts of hydroelectric reservoirs through operational control: a generic approach to reservoirs in northern Quebec. Ecol Modell, 105(1): 41−63
https://doi.org/10.1016/S0304-3800(97)00143-9
14 B Galperin, L H Kantha, S Hassid, A Rosati (1988). A quasi-equilibrium turbulent energy model for geophysical flows. J Atmos Sci, 45(1): 55−62
https://doi.org/10.1175/1520-0469(1988)045<0055:AQETEM>2.0.CO;2
15 F L Hellweger, P Masopust (2008). Investigating the fate and transport of Escherichia coli in the Charles River, Boston, using high-resolution observation and modeling. J Am Water Resour Assoc, 44(2): 509−522
https://doi.org/10.1111/j.1752-1688.2008.00179.x
16 G C Hocking, J C Patterson (1994). Modelling tracer dispersal and residence time in a reservoir. Ecol Modell, 74(1−2): 63−75
https://doi.org/10.1016/0304-3800(94)90111-2
17 HydroQual Inc (2002). A Primer for ECOMSED Version 1.3
18 J Imberger, J C Patterson (1989). Physical Limnology. Adv Appl Mech, 27: 303−475
https://doi.org/10.1016/S0065-2156(08)70199-6
19 W G Large, S Pond (1982). Sensible and latent heat flux measurements over the ocean. J Phys Oceanogr, 12(5): 464−482
https://doi.org/10.1175/1520-0485(1982)012<0464:SALHFM>2.0.CO;2
20 W Liu, W Chen, C Chiu (2012). Numerical modeling of hydrodynamic and hydrothermal characteristics in subtropical alpine lake. Appl Math Model, 36(5): 2094−2109
https://doi.org/10.1016/j.apm.2011.08.011
21 W C Liu, W B Chen (2013). Modeling hydrothermal, suspended solids transport and residence time in a deep reservoir. Int J Environ Sci Technol, 10(2): 251−260
https://doi.org/10.1007/s13762-012-0147-2
22 F Ma, C Jiang, W B Rauen, B Lin (2009). Modelling sediment transport processes in macro-tidal estuary. Science in China Series E: Technological Sciences, 52(11): 3368−3375
https://doi.org/10.1007/s11431-009-0351-6
23 R V Madala, S A Piacseki (1977). A semi-implicit numerical model for baroclinic oceans. J Comput Phys, 23(2): 167−178
https://doi.org/10.1016/0021-9991(77)90119-X
24 G L Mellor (2001). One-dimensional, ocean surface layer modeling: a problem and a solution. J Phys Oceanogr, 31(3): 790−809
https://doi.org/10.1175/1520-0485(2001)031<0790:ODOSLM>2.0.CO;2
25 G L Mellor, T Yamada (1982). Development of a turbulence closure model for geophysical fluid problems. Rev Geophys, 20(4): 851−875
https://doi.org/10.1029/RG020i004p00851
26 N E Monsen, J E Cloern, L V Lucas, S G Monismith (2002). The use of flushing time, residence time, and age as transport time scales. Limnol Oceanogr, 47(5): 1545−1553
https://doi.org/10.4319/lo.2002.47.5.1545
27 L Oey (2005). A wetting and drying scheme for POM. Ocean Model, 9(2): 133−150
https://doi.org/10.1016/j.ocemod.2004.06.002
28 L Oey (2006). An OGCM with movable land–sea boundaries. Ocean Model, 13(2): 176−195
https://doi.org/10.1016/j.ocemod.2006.01.001
29 L Oey, T Ezer, C Hu, F E Muller-Karger (2007). Baroclinic tidal flows and inundation processes in Cook Inlet, Alaska: numerical modeling and satellite observations. Ocean Dyn, 57(3): 205−221
https://doi.org/10.1007/s10236-007-0103-8
30 R S Patgaonkar, P Vethamony, K S Lokesh, M T Babu (2012). Residence time of pollutants discharged in the Gulf of Kachchh, northwestern Arabian Sea. Mar Pollut Bull, 64(8): 1659−1666
https://doi.org/10.1016/j.marpolbul.2012.05.033
31 J J C Phelps, J A Polton, A J Souza, L A Robinson (2013). Hydrodynamic timescales in a hyper-tidal region of freshwater influence. Cont Shelf Res, 63: 13−22
https://doi.org/10.1016/j.csr.2013.04.027
32 P E Robins, A J Elliott (2009). The internal tide of the Gareloch, a Scottish Fjord. Estuar Coast Shelf Sci, 81(1): 130−142
https://doi.org/10.1016/j.ecss.2008.10.022
33 A Rosati, K Miyakoda (1988). A general circulation model for upper ocean simulation. J Phys Oceanogr, 18(11): 1601−1626
https://doi.org/10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2
34 F Rueda, E Moreno-Ostos, J Armengol (2006). The residence time of river water in reservoirs. Ecol Modell, 191(2): 260−274
https://doi.org/10.1016/j.ecolmodel.2005.04.030
35 Y M Shen, J H Wang, B H Zheng, H Zhen, Y Feng, Z X Wang, X Yang (2011). Modeling study of residence time and water age in Dahuofang Reservoir in China. Science China Physics, Mechanics & Astronomy, 54(1): 127−142
https://doi.org/10.1007/s11433-010-4207-7
36 T J Simons (1974). Verification of numerical-models of Lake Ontario: Part I. Circulation in spring and early summer. J Phys Oceanogr, 4(4): 507−523
https://doi.org/10.1175/1520-0485(1974)004<0507:VONMOL>2.0.CO;2
37 J Smagorinsky (1963). General circulation experiments with the primitive equations I. The basic experiment. Mon Weather Rev, 91(3): 99−164
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
38 P K Smolarkiewicz (1984). A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. J Comput Phys, 54(2): 325−362
https://doi.org/10.1016/0021-9991(84)90121-9
39 H Takeoka (1984). Fundamental concepts of exchange and transport time scales in a coastal sea. Cont Shelf Res, 3(3): 311−326
https://doi.org/10.1016/0278-4343(84)90014-1
40 J J Vallino, J C S Hopkinson Jr (1998). Estimation of dispersion and characteristic mixing times in Plum Island Sound Estuary. Estuar Coast Shelf Sci, 46(3): 333−350
https://doi.org/10.1006/ecss.1997.0281
41 J van de Kreeke (1983). Residence time: application to Small Boat Basins. J Waterw Port Coast Ocean Eng, 109(4): 416−428
https://doi.org/10.1061/(ASCE)0733-950X(1983)109:4(416)
42 C F Wang, M H Hsu, A Y Kuo (2004). Residence time of the Danshuei River estuary, Taiwan. Estuar Coast Shelf Sci, 60(3): 381−393
https://doi.org/10.1016/j.ecss.2004.01.013
43 J H Wang, Y M Shen, H Zhen, Y Feng, Z X Wang, X Yang (2011). Three-dimensional numerical modelling of water quality in Dahuofang Reservoir in China. Science China Physics, Mechanics & Astronomy, 54(7): 1328−1341
https://doi.org/10.1007/s11433-011-4365-2
44 J C Warner, W Rockwell Geyer, H G Arango (2010). Using a composite grid approach in a complex coastal domain to estimate estuarine residence time. Comput Geosci, 36(7): 921−935
https://doi.org/10.1016/j.cageo.2009.11.008
45 W G Zhang, J L Wilkin, O M E Schofield (2010). Simulation of water age and residence time in New York Bight. J Phys Oceanogr, 40(5): 965−982
https://doi.org/10.1175/2009JPO4249.1
46 Y H Zhang, M Zhang (2011). Numerical simulation of hydrodynamics and waste water diffusion of Yangtze River Estuary affected by Three Gorges Project in flood season. Chinese Journal of Hydrodynamics, 26(4): 470−478 (in Chinese)
47 J T F Zimmerman (1976). Mixing and flushing of tidal embayments in the western Dutch Wadden Sea part I: Distribution of salinity and calculation of mixing time scales. Neth J Sea Res, 10(2): 149−191
https://doi.org/10.1016/0077-7579(76)90013-2
[1] Bo HONG, Jian SHEN, Hongzhou XU. Upriver transport of dissolved substances in an estuary and sub-estuary system of the lower James River, Chesapeake Bay[J]. Front. Earth Sci., 2018, 12(3): 583-599.
[2] António M. BAPTISTA, Charles SEATON, Michael P. WILKIN, Sarah F. RISEMAN, Joseph A. NEEDOBA, David MAIER, Paul J. TURNER, Tuomas KÄRNÄ, Jesse E. LOPEZ, Lydie HERFORT, V.M. MEGLER, Craig McNEIL, Byron C. CRUMP, Tawnya D. PETERSON, Yvette H. SPITZ, Holly M. SIMON. Infrastructure for collaborative science and societal applications in the Columbia River estuary[J]. Front. Earth Sci., 2015, 9(4): 659-682.
[3] Yong ZENG,Yanpeng CAI,Peng JIA,Jiansu MAO. Development of a model-based flood emergency management system in Yujiang River Basin, South China[J]. Front. Earth Sci., 2014, 8(2): 231-241.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed