|
|
|
Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations |
Changjian WANG1,2,*( ),Xiaolei ZHANG1,*( ),Fei WANG1,2,Jun LEI1,Li ZHANG3 |
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Fujian Urban & Rural Planning Design Institute, Fuzhou 350003, China |
|
|
|
|
Abstract Regional carbon emissions research is necessary and helpful for China in realizing reduction targets. The LMDI I (Logarithmic Mean Divisia Index I) technique based on an extended Kaya identity was conducted to uncover the main five driving forces for energy-related carbon emissions in Xinjiang, an important energy base in China. Decomposition results show that the affluence effect and the population effect are the two most important contributors to increased carbon emissions. The energy intensity effect had a positive influence on carbon emissions during the pre-reform period, and then became the dominant factor in curbing carbon emissions after 1978. The renewable energy penetration effect and the emission coefficient effect showed important negative but relatively minor effects on carbon emissions. Based on the local realities, a comprehensive suite of mitigation policies are raised by considering all of these influencing factors. Mitigation policies will need to significantly reduce energy intensity and pay more attention to the regional economic development path. Fossil fuel substitution should be considered seriously. Renewable energy should be increased in the energy mix. All of these policy recommendations, if implemented by the central and local government, should make great contributions to energy saving and emission reduction in Xinjiang.
|
| Keywords
carbon emissions
Xinjiang
index decomposition analysis
mitigation policy recommendations
|
|
Corresponding Author(s):
Changjian WANG,Xiaolei ZHANG
|
|
Online First Date: 12 June 2014
Issue Date: 04 February 2015
|
|
| 1 |
Ang B W (2005). The LMDI approach to decomposition analysis: a practical guide. Energy Policy, 33(7): 867–871
https://doi.org/10.1016/j.enpol.2003.10.010
|
| 2 |
Ang B W, Liu F L (2001). A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 26(6): 537–548
https://doi.org/10.1016/S0360-5442(01)00022-6
|
| 3 |
Ang B W, Liu F L, Chew E P (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31(14): 1561–1566
https://doi.org/10.1016/S0301-4215(02)00206-9
|
| 4 |
Ang B W, Zhang F Q, Choi K H (1998). Factorizing changes in energy and environmental indicators through decomposition. Energy, 23(6): 489–495
https://doi.org/10.1016/S0360-5442(98)00016-4
|
| 5 |
Casler S, Rose A (1998). Carbon dioxide emissions in the U.S. economy: a structural decomposition analysis. Environ Resour Econ, 11(3/4): 349–363
https://doi.org/10.1023/A:1008224101980
|
| 6 |
Chen G Q, Guo S, Shao L, Li J S, Chen Z M (2013). Three-scale input-output modeling for urban economy: carbon emission by Beijing 2007. Commun Nonlinear Sci Numer Simul, 18(9): 2493–2506
https://doi.org/10.1016/j.cnsns.2012.12.029
|
| 7 |
Chen G Q, Shao L, Chen Z M, Li Z, Zhang B, Chen H, Wu Z (2011a). Low-carbon assessment for ecological wastewater treatment by a constructed wetland in Beijing. Ecol Eng, 37(4): 622–628
https://doi.org/10.1016/j.ecoleng.2010.12.027
|
| 8 |
Chen G Q, Zhang B (2010). Greenhouse gas emissions in China 2007: inventory and input-output analysis. Energy Policy, 38(10): 6180–6193
https://doi.org/10.1016/j.enpol.2010.06.004
|
| 9 |
Chen Q, Kang C, Xia Q, Guan D (2011b). Preliminary exploration on low-carbon technology roadmap of China’s power sector. Energy, 36(3): 1500–1512
https://doi.org/10.1016/j.energy.2011.01.015
|
| 10 |
Chen Z M, Chen G Q (2011). Embodied carbon dioxide emission at supra-national scale: a coalition analysis for G7, BRIC, and the rest of the world. Energy Policy, 39(5): 2899–2909
https://doi.org/10.1016/j.enpol.2011.02.068
|
| 11 |
Davis S J, Caldeira K (2010). Consumption-based accounting of CO2 emissions. Proc Natl Acad Sci USA, 107(12): 5687–5692
https://doi.org/10.1073/pnas.0906974107
pmid: 20212122
|
| 12 |
Friedlingstein P, Houghton R A, Marland G, Hackler J, Boden T A, Conway T J, Canadell J G, Raupach M R, Ciais P, Le Quéré C (2010). Update on CO2 emissions. Nat Geosci, 3(12): 811–812
https://doi.org/10.1038/ngeo1022
|
| 13 |
Geng Y, Zhao H, Liu Z, Xue B, Fujita T, Xi F (2013). Exploring driving factors of energy-related CO2 emissions in Chinese provinces: a case of Liaoning. Energy Policy, 60: 820–826
https://doi.org/10.1016/j.enpol.2013.05.054
|
| 14 |
Glomsr?d S, Wei T Y (2005). Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China? Energy Policy, 33(4): 525–542
https://doi.org/10.1016/j.enpol.2003.08.019
|
| 15 |
Guan D, Hubacek K, Weber C L, Peters G P, Reiner D M (2008). The drivers of Chinese CO2 emissions from 1980 to 2030. Glob Environ Change, 18(4): 626–634
https://doi.org/10.1016/j.gloenvcha.2008.08.001
|
| 16 |
Guan D, Peters G P, Weber C L, Hubacek K (2009). Journey to world top emitter—An analysis of the driving forces of China’s recent CO2 emissions surge. Geophys Res Lett, 36(4): L04709
https://doi.org/10.1029/2008GL036540
|
| 17 |
Hoekstra R, van den Bergh J C J M (2003). Comparing structural decomposition analysis and index. Energy Econ, 25(1): 39–64
https://doi.org/10.1016/S0140-9883(02)00059-2
|
| 18 |
Larson E D, Wu Z X, DeLaquil P, Chen W Y, Gao P F (2003). Future implications of China’s energy-technology choices. Energy Policy, 31(12): 1189–1204
https://doi.org/10.1016/S0301-4215(02)00171-4
|
| 19 |
Lee C F, Lin S J (2001). Structural decomposition of CO2 emissions from Taiwan’s petrochemical industries. Energy Policy, 29(3): 237–244
https://doi.org/10.1016/S0301-4215(00)00117-8
|
| 20 |
Li C, Ge X, Zheng Y, Xu C, Ren Y, Song C, Yang C (2013a). Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China. Energy, 55: 263–272
https://doi.org/10.1016/j.energy.2013.03.084
|
| 21 |
Li J S, Chen G Q, Lai T M, Ahmad B, Chen Z M, Shao L, Ji X (2013b). Embodied greenhouse gas emission by Macao. Energy Policy, 59: 819–833
https://doi.org/10.1016/j.enpol.2013.04.042
|
| 22 |
Liang S, Xu M, Suh S, Tan R R (2013). Unintended environmental consequences and co-benefits of economic restructuring. Environ Sci Technol, 47(22): 12894–12902
https://doi.org/10.1021/es402458u
pmid: 24117387
|
| 23 |
Liang S, Zhang T (2011a). Interactions of energy technology development and new energy exploitation with water technology development in China. Energy, 36(12): 6960–6966
https://doi.org/10.1016/j.energy.2011.09.013
|
| 24 |
Liang S, Zhang T (2011b). What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province. Energy Policy, 39(11): 7078–7083
https://doi.org/10.1016/j.enpol.2011.08.014
|
| 25 |
Liao H, Fan Y, Wei Y M (2007). What induced China’s energy intensity to fluctuate: 1997–2006? Energy Policy, 35(9): 4640–4649
https://doi.org/10.1016/j.enpol.2007.03.028
|
| 26 |
Lin J, Liu Y, Meng F, Cui S, Xu L (2013). Using hybrid method to evaluate carbon footprint of Xiamen City, China. Energy Policy, 58: 220–227
https://doi.org/10.1016/j.enpol.2013.03.007
|
| 27 |
Liu L C, Fan Y, Wu G, Wei Y M (2007). Using LMDI method to analyzed the change of China’s industrial CO2 emissions from final fuel use: an empirical analysis. Energy Policy, 35(11): 5892–5900
https://doi.org/10.1016/j.enpol.2007.07.010
|
| 28 |
Liu Z, Geng Y, Lindner S, Guan D (2012). Uncovering China’s greenhouse gas emission from regional and sectoral perspectives. Energy, 45(1): 1059–1068
https://doi.org/10.1016/j.energy.2012.06.007
|
| 29 |
Lu Y, Stegman A, Cai Y (2013). Emissions intensity targeting: from China’s 12th Five Year Plan to its Copenhagen commitment. Energy Policy, 61: 1164–1177
https://doi.org/10.1016/j.enpol.2013.06.075
|
| 30 |
Ma C, Stern D I (2008). Biomass and China’s carbon emissions: a missing piece of carbon decomposition. Energy Policy, 36(7): 2517–2526
https://doi.org/10.1016/j.enpol.2008.03.013
|
| 31 |
Ma Z, Xue B, Geng Y, Ren W, Fujita T, Zhang Z, Puppim de Oliveira J A, Jacques D A, Xi F (2013). Co-benefits analysis on climate change and environmental effects of wind-power: a case study from Xinjiang, China. Renew Energy, 57: 35–42
https://doi.org/10.1016/j.renene.2013.01.018
|
| 32 |
Mahony T O (2013). Decomposition of Ireland’s carbon emissions from 1990 to 2010: an extended Kaya identity. Energy Policy, 59: 573–581
https://doi.org/10.1016/j.enpol.2013.04.013
|
| 33 |
Raupach M R, Marland G, Ciais P, Le Quéré C, Canadell J G, Klepper G, Field C B (2007). Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA, 104(24): 10288–10293
https://doi.org/10.1073/pnas.0700609104
pmid: 17519334
|
| 34 |
Rose A, Casler S (1996). Input-output structural decomposition analysis: a critical appraisal. Econ Syst Res, 8(1): 33–62
https://doi.org/10.1080/09535319600000003
|
| 35 |
Steckel J C, Jakob M, Marschinski R, Luderer G (2011). F rom carbonization to decarbonization? Past trends and future scenarios for China’s CO2 emissions. Energy Policy, 39(6): 3443–3455
https://doi.org/10.1016/j.enpol.2011.03.042
|
| 36 |
Tian X, Chang M, Tanikawa H, Shi F, Imura H (2013). Structural decomposition analysis of the carbonization process in Beijing: a regional explanation of rapid increasing carbon dioxide emission in China. Energy Policy, 53: 279–286
https://doi.org/10.1016/j.enpol.2012.10.054
|
| 37 |
Wang C, Chen J N, Zou J (2005). Decomposition of energy-related CO2 emission in China: 1957–2000. Energy, 30(1): 73–83
https://doi.org/10.1016/j.energy.2004.04.002
|
| 38 |
Wang C, Wang F, Li L, Zhang X (2013a). Wake-up call for China to re-evaluate its shale-gas ambition. Environ Sci Technol, 47(21): 11920–11921
https://doi.org/10.1021/es403642u
pmid: 24147794
|
| 39 |
Wang C, Wang F, Wang Q, Yang D, Li L, Zhang X (2013b). Preparing for Myanmar’s environment-friendly reform. Environ Sci Policy, 25: 229–233
https://doi.org/10.1016/j.envsci.2012.08.014
|
| 40 |
Wang C, Wang Q, Wang F (2012). Is Vietnam ready for nuclear power? Environ Sci Technol, 46(10): 5269–5270
https://doi.org/10.1021/es301537t
pmid: 22540667
|
| 41 |
Wang Y, Liang S (2013). Carbon dioxide mitigation target of China in 2020 and key economic sectors. Energy Policy, 58: 90–96
https://doi.org/10.1016/j.enpol.2013.02.038
|
| 42 |
Wang Y, Zhao H, Li L, Liu Z, Liang S (2013c). Carbon dioxide emission drivers for a typical metropolis using input-output structural decomposition analysis. Energy Policy, 58: 312–318
https://doi.org/10.1016/j.enpol.2013.03.022
|
| 43 |
Wu L B, Kaneko S, Matsuoka S (2005). Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change. Energy Policy, 33(3): 319–335
https://doi.org/10.1016/j.enpol.2003.08.003
|
| 44 |
Xi F, Geng Y, Chen X, Zhang Y, Wang X, Xue B, Dong H, Liu Z, Ren W, Fujita T, Zhu Q (2011). Contributing to local policy making on GHG emission reduction through inventorying and attribution: a case study of Shenyang, China. Energy Policy, 39(10): 5999–6010
https://doi.org/10.1016/j.enpol.2011.06.063
|
| 45 |
Xia X H, Huang G T, Chen G Q, Zhang B, Chen Z M, Yang Q (2011). Energy security, efficiency and carbon emission of Chinese industry. Energy Policy, 39(6): 3520–3528
https://doi.org/10.1016/j.enpol.2011.03.051
|
| 46 |
Xu J H, Fleiter T, Eichhammer W, Fan Y (2012). Energy consumption and CO2 emissions in China’s cement industry: a perspective from LMDI decomposition analysis. Energy Policy, 50: 821–832
https://doi.org/10.1016/j.enpol.2012.08.038
|
| 47 |
Zhang M, Mu H, Ning Y (2009a). Accounting for energy-related CO2 emission in China, 1991–2006. Energy Policy, 37(3): 767–773
https://doi.org/10.1016/j.enpol.2008.11.025
|
| 48 |
Zhang M, Mu H, Ning Y, Song Y (2009b). Decomposition of energy-related CO2 emission over 1991–2006 in China. Ecol Econ, 68(7): 2122–2128
https://doi.org/10.1016/j.ecolecon.2009.02.005
|
| 49 |
Zhang Z, Guo J, Qian D, Xue Y, Cai L (2013). Effects and mechanism of influence of China’s resource tax reform: a regional perspective. Energy Econ, 36: 676–685
https://doi.org/10.1016/j.eneco.2012.11.014
|
| 50 |
Zhao M, Tan L, Zhang W, Ji M, Liu Y, Yu L (2010). Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy, 35(6): 2505–2510
https://doi.org/10.1016/j.energy.2010.02.049
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|