Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (1) : 65-76    https://doi.org/10.1007/s11707-014-0442-y
RESEARCH ARTICLE
Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations
Changjian WANG1,2,*(),Xiaolei ZHANG1,*(),Fei WANG1,2,Jun LEI1,Li ZHANG3
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Fujian Urban & Rural Planning Design Institute, Fuzhou 350003, China
 Download: PDF(886 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Regional carbon emissions research is necessary and helpful for China in realizing reduction targets. The LMDI I (Logarithmic Mean Divisia Index I) technique based on an extended Kaya identity was conducted to uncover the main five driving forces for energy-related carbon emissions in Xinjiang, an important energy base in China. Decomposition results show that the affluence effect and the population effect are the two most important contributors to increased carbon emissions. The energy intensity effect had a positive influence on carbon emissions during the pre-reform period, and then became the dominant factor in curbing carbon emissions after 1978. The renewable energy penetration effect and the emission coefficient effect showed important negative but relatively minor effects on carbon emissions. Based on the local realities, a comprehensive suite of mitigation policies are raised by considering all of these influencing factors. Mitigation policies will need to significantly reduce energy intensity and pay more attention to the regional economic development path. Fossil fuel substitution should be considered seriously. Renewable energy should be increased in the energy mix. All of these policy recommendations, if implemented by the central and local government, should make great contributions to energy saving and emission reduction in Xinjiang.

Keywords carbon emissions      Xinjiang      index decomposition analysis      mitigation policy recommendations     
Corresponding Author(s): Changjian WANG,Xiaolei ZHANG   
Online First Date: 12 June 2014    Issue Date: 04 February 2015
 Cite this article:   
Changjian WANG,Xiaolei ZHANG,Fei WANG, et al. Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations[J]. Front. Earth Sci., 2015, 9(1): 65-76.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0442-y
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I1/65
Energy sources Conversion factors a) LCV /(MJ·t–1 or MJ· m–3) b) Carbon emission factors/(t C·(TJ)–1) c) Oxidation rate c)
Raw coal 0.7143 tce/t 20.908 25.80 0.918
Cleaned coal 0.9000 tce/t 26.344 27.68 0.918
Other washed coal 0.2857 tce/t ?8.363 25.80 0.918
Coke 0.9714 tce/t 28.435 29.41 0.928
Crude oil 1.4286 tce/t 41.816 20.08 0.979
Gasoline 1.4714 tce/t 43.070 18.90 0.986
Kerosene 1.4714 tce/t 43.070 19.60 0.980
Diesel oil 1.4571 tce/t 42.652 20.17 0.982
Fuel oil 1.4286 tce/t 41.816 21.09 0.985
Other petroleum products 1.4286 tce/t 41.816 20.00 0.980
Nature gas ???1.33 tce/103 m3 38.931 17.20 0.990
LPG 1.7143 tce/t 50.179 17.20 0.989
Refinery gas 1.5714 tce/t 46.055 18.20 0.989
Tab.1  Conversion factors, LCV, oxidation rate and carbon emission factors of energy sources
Fig.1  Total energy consumption in million tonnes of coal equivalent (Mtce) in Xinjiang from 1952 to 2010.
Fig.2  Changes of energy consumption structure in Xinjiang from 1952 to 2010.
Fig.3  Total carbon emissions in million tonnes of Xinjiang from 1952 to 2010.
Fig.4  Contributions of Xinjiang’s GDP and carbon emissions to China from 1952 to 2010.
Fig.5  Share changes of carbon emissions from the consumption of coal, oil, and natural gas from 1952 to 2010.
Year p-effect g-effect e-effect s-effect f-effect ?C
1952–1953 0.0094 0.0344 0.0675 0.0000 –0.0021 0.1093
1953–1954 0.0155 0.0429 –0.1468 0.0000 0.0033 –0.0850
1954–1955 0.0086 0.0546 0.0722 0.0000 0.0004 0.1359
1955–1956 0.0207 0.0795 0.0269 0.0000 –0.0034 0.1236
1956–1957 0.0284 0.0050 0.0908 –0.0019 –0.0082 0.1141
1957–1958 0.0551 0.1462 1.2711 0.0026 0.0245 1.4995
1958–1959 0.2847 0.3173 0.4030 0.0000 –0.0578 0.9471
1959–1960 0.1935 0.3420 0.1945 0.0000 –0.0517 0.6783
1960–1961 0.1134 –1.3811 0.3311 –0.0067 0.0398 –0.9035
1961–1962 –0.0378 –0.3789 –0.5674 –0.0048 0.0427 –0.9462
1962–1963 0.0384 0.1977 –0.3130 –0.0039 0.0004 –0.0804
1963–1964 0.0857 0.2465 –0.0495 0.0000 –0.0120 0.2706
1964–1965 0.1344 0.2077 –0.0428 –0.0023 –0.0029 0.2942
1965–1966 0.1583 0.1796 0.0563 –0.0053 0.0022 0.3911
1966–1967 0.1116 –0.5515 0.4123 –0.0114 0.0066 –0.0326
1967–1968 0.1124 –0.4559 0.2186 –0.0028 –0.0028 –0.1304
1968–1969 0.0995 –0.0689 –0.1033 0.0000 –0.0227 –0.0953
1969–1970 0.1040 0.3630 0.4713 –0.0031 0.0074 0.9426
1970–1971 0.1239 0.3358 –0.1005 0.0038 –0.0089 0.3540
1971–1972 0.1495 –0.4194 0.2684 –0.0079 0.0066 –0.0026
1972–1973 0.1450 –0.0984 0.1157 0.0000 –0.0295 0.1328
1973–1974 0.1344 –0.0725 0.0363 –0.0041 0.0037 0.0978
1974–1975 0.1148 0.4173 0.4773 0.0093 –0.0662 0.9524
1975–1976 0.1401 0.5128 –0.3323 –0.0107 0.0756 0.3856
1976–1977 0.1135 0.5701 0.1915 –0.0060 0.0059 0.8750
1977–1978 0.1285 0.3737 –0.0439 0.0000 –0.0243 0.4340
1978–1979 0.1243 0.6929 –0.8006 –0.0137 –0.0242 –0.0213
1979–1980 0.1476 0.6316 –0.4832 0.0000 –0.0062 0.2898
1980–1981 0.1096 0.5612 –0.3740 –0.0146 –0.0060 0.2761
1981–1982 0.0716 0.5972 –0.6030 –0.0224 –0.0308 0.0125
1982–1983 0.1007 1.2027 –0.5945 0.0000 0.0225 0.7315
1983–1984 0.0662 0.7794 –0.4750 –0.0084 0.0190 0.3812
1984–1985 0.1134 1.1999 –0.1619 0.0185 0.0093 1.1792
1985–1986 0.1590 0.5662 –0.5026 –0.0199 –0.0010 0.2017
1986–1987 0.1599 0.5486 –0.6153 –0.0304 0.0039 0.0668
1987–1988 0.1487 1.1489 –0.0147 0.0000 –0.0245 1.2585
1988–1989 0.2213 –0.6171 1.1406 –0.0119 0.0106 0.7436
1989–1990 0.6239 1.1737 –0.7072 0.0000 0.0044 1.0948
1990–1991 0.2217 2.1186 –1.3041 0.0277 –0.0745 0.9894
1991–1992 0.2418 1.2442 –0.1767 –0.0450 –0.0592 1.2051
1992–1993 0.2450 1.1721 0.1129 –0.0164 –0.1130 1.4007
1993–1994 0.2878 0.7592 –0.2201 –0.0176 0.0415 0.8509
1994–1995 0.3094 0.6344 –0.1780 –0.0184 0.0206 0.7680
1995–1996 0.3200 –0.0115 1.7952 0.0397 –0.0843 2.0591
1996–1997 0.3458 2.2195 –1.8630 –0.0636 –0.1806 0.4581
1997–1998 0.3555 1.0251 –0.6030 –0.0218 –0.0479 0.7078
1998–1999 0.3325 1.5412 –2.0698 –0.2433 0.0008 –0.4386
1999–2000 0.8768 2.8783 –3.0945 0.0672 0.0560 0.7838
2000–2001 0.3177 1.1216 –0.2686 –0.0695 –0.3910 0.7102
2001–2002 0.3520 1.9290 –1.4688 0.0482 0.1270 0.9873
2002–2003 0.3706 3.7018 –1.2243 –0.0779 –0.1348 2.6355
2003–2004 0.4254 3.8639 0.3494 0.2974 –0.1014 4.8347
2004–2005 0.7848 4.8416 –0.9903 –0.0344 –0.3324 4.2693
2005–2006 0.7195 4.3898 –1.6584 –0.1153 0.0252 3.3609
2006–2007 0.8785 2.9901 –0.4919 0.0421 0.1303 3.5492
2007–2008 0.7382 3.2343 –0.8040 –0.3211 0.5879 3.4353
2008–2009 0.6127 0.2001 2.1409 –0.1492 0.6528 3.4573
2009–2010 0.5365 8.9143 –4.4877 –0.2712 –0.0144 4.6774
Tab.2  Complete decomposition of carbon emission change in million tones (1952–2010)
Stage Historical backgrounds Population growth rate per year/% GDP growth rate per year/% Carbon emissions growth rate per year/% Carbon emissions per GDP growth rate per year/% Carbon emissions per capita growth rate per year/%
Stage 1 (1952–1957) First Five-Year Plan 3.71 15.45 15.67 ??5.25 14.84
Stage 2 (1958–1960) Great Leap Forward 8.56 21.16 32.09 ??8.17 21.67
Stage 3 (1961–1977) Cultural Revolution 3.38 ?4.89 ?4.97 ??1.69 ?1.54
Stage 4 (1978–1990) Reform and Opening up 1.81 10.7 ?5.59 –10.96 ?3.71
Stage 5 (1991–2000) Advantageous ResourcesTransformation Strategy 1.95 ?9.03 ?5.06 –11.22 ?3.05
Stage 6 (2001–2010) Western Development 1.69 13.28 10.16 ?–4.80 ?9.33
Tab.3  Brief description of six division stages
Stage p-effect g-effect e-effect s-effect f-effect ?C
Stage 1 (1952–1957) 0.0829 ?0.2444 0.0790 –0.0014 –0.0070 ?0.3979
Stage 2 (1958–1960) 0.4798 ?0.6414 ??0.6121 ?0.0000 –0.1079 ?1.6254
Stage 3 (1961–1977) 2.3365 ?0.8093 ?0.3326 –0.0710 ?0.0014 ?3.4087
Stage 4 (1978–1990) 2.0490 ?9.5653 –5.2444 –0.1172 –0.0384 ?6.2143
Stage 5 (1991–2000) 3.0497 10.6074 –5.2116 –0.2918 –0.3588 ?7.7949
Stage 6 (2001–2010) 5.3981 34.4471 –8.9191 –0.3403 ?0.6209 31.2067
Tab.4  Complete decomposition of carbon emission changes in million tones in six stages
Fig.6  The comparison of decomposition results for the six periods.
1 Ang B W (2005). The LMDI approach to decomposition analysis: a practical guide. Energy Policy, 33(7): 867–871
https://doi.org/10.1016/j.enpol.2003.10.010
2 Ang B W, Liu F L (2001). A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 26(6): 537–548
https://doi.org/10.1016/S0360-5442(01)00022-6
3 Ang B W, Liu F L, Chew E P (2003). Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 31(14): 1561–1566
https://doi.org/10.1016/S0301-4215(02)00206-9
4 Ang B W, Zhang F Q, Choi K H (1998). Factorizing changes in energy and environmental indicators through decomposition. Energy, 23(6): 489–495
https://doi.org/10.1016/S0360-5442(98)00016-4
5 Casler S, Rose A (1998). Carbon dioxide emissions in the U.S. economy: a structural decomposition analysis. Environ Resour Econ, 11(3/4): 349–363
https://doi.org/10.1023/A:1008224101980
6 Chen G Q, Guo S, Shao L, Li J S, Chen Z M (2013). Three-scale input-output modeling for urban economy: carbon emission by Beijing 2007. Commun Nonlinear Sci Numer Simul, 18(9): 2493–2506
https://doi.org/10.1016/j.cnsns.2012.12.029
7 Chen G Q, Shao L, Chen Z M, Li Z, Zhang B, Chen H, Wu Z (2011a). Low-carbon assessment for ecological wastewater treatment by a constructed wetland in Beijing. Ecol Eng, 37(4): 622–628
https://doi.org/10.1016/j.ecoleng.2010.12.027
8 Chen G Q, Zhang B (2010). Greenhouse gas emissions in China 2007: inventory and input-output analysis. Energy Policy, 38(10): 6180–6193
https://doi.org/10.1016/j.enpol.2010.06.004
9 Chen Q, Kang C, Xia Q, Guan D (2011b). Preliminary exploration on low-carbon technology roadmap of China’s power sector. Energy, 36(3): 1500–1512
https://doi.org/10.1016/j.energy.2011.01.015
10 Chen Z M, Chen G Q (2011). Embodied carbon dioxide emission at supra-national scale: a coalition analysis for G7, BRIC, and the rest of the world. Energy Policy, 39(5): 2899–2909
https://doi.org/10.1016/j.enpol.2011.02.068
11 Davis S J, Caldeira K (2010). Consumption-based accounting of CO2 emissions. Proc Natl Acad Sci USA, 107(12): 5687–5692
https://doi.org/10.1073/pnas.0906974107 pmid: 20212122
12 Friedlingstein P, Houghton R A, Marland G, Hackler J, Boden T A, Conway T J, Canadell J G, Raupach M R, Ciais P, Le Quéré C (2010). Update on CO2 emissions. Nat Geosci, 3(12): 811–812
https://doi.org/10.1038/ngeo1022
13 Geng Y, Zhao H, Liu Z, Xue B, Fujita T, Xi F (2013). Exploring driving factors of energy-related CO2 emissions in Chinese provinces: a case of Liaoning. Energy Policy, 60: 820–826
https://doi.org/10.1016/j.enpol.2013.05.054
14 Glomsr?d S, Wei T Y (2005). Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China? Energy Policy, 33(4): 525–542
https://doi.org/10.1016/j.enpol.2003.08.019
15 Guan D, Hubacek K, Weber C L, Peters G P, Reiner D M (2008). The drivers of Chinese CO2 emissions from 1980 to 2030. Glob Environ Change, 18(4): 626–634
https://doi.org/10.1016/j.gloenvcha.2008.08.001
16 Guan D, Peters G P, Weber C L, Hubacek K (2009). Journey to world top emitter—An analysis of the driving forces of China’s recent CO2 emissions surge. Geophys Res Lett, 36(4): L04709
https://doi.org/10.1029/2008GL036540
17 Hoekstra R, van den Bergh J C J M (2003). Comparing structural decomposition analysis and index. Energy Econ, 25(1): 39–64
https://doi.org/10.1016/S0140-9883(02)00059-2
18 Larson E D, Wu Z X, DeLaquil P, Chen W Y, Gao P F (2003). Future implications of China’s energy-technology choices. Energy Policy, 31(12): 1189–1204
https://doi.org/10.1016/S0301-4215(02)00171-4
19 Lee C F, Lin S J (2001). Structural decomposition of CO2 emissions from Taiwan’s petrochemical industries. Energy Policy, 29(3): 237–244
https://doi.org/10.1016/S0301-4215(00)00117-8
20 Li C, Ge X, Zheng Y, Xu C, Ren Y, Song C, Yang C (2013a). Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China. Energy, 55: 263–272
https://doi.org/10.1016/j.energy.2013.03.084
21 Li J S, Chen G Q, Lai T M, Ahmad B, Chen Z M, Shao L, Ji X (2013b). Embodied greenhouse gas emission by Macao. Energy Policy, 59: 819–833
https://doi.org/10.1016/j.enpol.2013.04.042
22 Liang S, Xu M, Suh S, Tan R R (2013). Unintended environmental consequences and co-benefits of economic restructuring. Environ Sci Technol, 47(22): 12894–12902
https://doi.org/10.1021/es402458u pmid: 24117387
23 Liang S, Zhang T (2011a). Interactions of energy technology development and new energy exploitation with water technology development in China. Energy, 36(12): 6960–6966
https://doi.org/10.1016/j.energy.2011.09.013
24 Liang S, Zhang T (2011b). What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province. Energy Policy, 39(11): 7078–7083
https://doi.org/10.1016/j.enpol.2011.08.014
25 Liao H, Fan Y, Wei Y M (2007). What induced China’s energy intensity to fluctuate: 1997–2006? Energy Policy, 35(9): 4640–4649
https://doi.org/10.1016/j.enpol.2007.03.028
26 Lin J, Liu Y, Meng F, Cui S, Xu L (2013). Using hybrid method to evaluate carbon footprint of Xiamen City, China. Energy Policy, 58: 220–227
https://doi.org/10.1016/j.enpol.2013.03.007
27 Liu L C, Fan Y, Wu G, Wei Y M (2007). Using LMDI method to analyzed the change of China’s industrial CO2 emissions from final fuel use: an empirical analysis. Energy Policy, 35(11): 5892–5900
https://doi.org/10.1016/j.enpol.2007.07.010
28 Liu Z, Geng Y, Lindner S, Guan D (2012). Uncovering China’s greenhouse gas emission from regional and sectoral perspectives. Energy, 45(1): 1059–1068
https://doi.org/10.1016/j.energy.2012.06.007
29 Lu Y, Stegman A, Cai Y (2013). Emissions intensity targeting: from China’s 12th Five Year Plan to its Copenhagen commitment. Energy Policy, 61: 1164–1177
https://doi.org/10.1016/j.enpol.2013.06.075
30 Ma C, Stern D I (2008). Biomass and China’s carbon emissions: a missing piece of carbon decomposition. Energy Policy, 36(7): 2517–2526
https://doi.org/10.1016/j.enpol.2008.03.013
31 Ma Z, Xue B, Geng Y, Ren W, Fujita T, Zhang Z, Puppim de Oliveira J A, Jacques D A, Xi F (2013). Co-benefits analysis on climate change and environmental effects of wind-power: a case study from Xinjiang, China. Renew Energy, 57: 35–42
https://doi.org/10.1016/j.renene.2013.01.018
32 Mahony T O (2013). Decomposition of Ireland’s carbon emissions from 1990 to 2010: an extended Kaya identity. Energy Policy, 59: 573–581
https://doi.org/10.1016/j.enpol.2013.04.013
33 Raupach M R, Marland G, Ciais P, Le Quéré C, Canadell J G, Klepper G, Field C B (2007). Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA, 104(24): 10288–10293
https://doi.org/10.1073/pnas.0700609104 pmid: 17519334
34 Rose A, Casler S (1996). Input-output structural decomposition analysis: a critical appraisal. Econ Syst Res, 8(1): 33–62
https://doi.org/10.1080/09535319600000003
35 Steckel J C, Jakob M, Marschinski R, Luderer G (2011). F rom carbonization to decarbonization? Past trends and future scenarios for China’s CO2 emissions. Energy Policy, 39(6): 3443–3455
https://doi.org/10.1016/j.enpol.2011.03.042
36 Tian X, Chang M, Tanikawa H, Shi F, Imura H (2013). Structural decomposition analysis of the carbonization process in Beijing: a regional explanation of rapid increasing carbon dioxide emission in China. Energy Policy, 53: 279–286
https://doi.org/10.1016/j.enpol.2012.10.054
37 Wang C, Chen J N, Zou J (2005). Decomposition of energy-related CO2 emission in China: 1957–2000. Energy, 30(1): 73–83
https://doi.org/10.1016/j.energy.2004.04.002
38 Wang C, Wang F, Li L, Zhang X (2013a). Wake-up call for China to re-evaluate its shale-gas ambition. Environ Sci Technol, 47(21): 11920–11921
https://doi.org/10.1021/es403642u pmid: 24147794
39 Wang C, Wang F, Wang Q, Yang D, Li L, Zhang X (2013b). Preparing for Myanmar’s environment-friendly reform. Environ Sci Policy, 25: 229–233
https://doi.org/10.1016/j.envsci.2012.08.014
40 Wang C, Wang Q, Wang F (2012). Is Vietnam ready for nuclear power? Environ Sci Technol, 46(10): 5269–5270
https://doi.org/10.1021/es301537t pmid: 22540667
41 Wang Y, Liang S (2013). Carbon dioxide mitigation target of China in 2020 and key economic sectors. Energy Policy, 58: 90–96
https://doi.org/10.1016/j.enpol.2013.02.038
42 Wang Y, Zhao H, Li L, Liu Z, Liang S (2013c). Carbon dioxide emission drivers for a typical metropolis using input-output structural decomposition analysis. Energy Policy, 58: 312–318
https://doi.org/10.1016/j.enpol.2013.03.022
43 Wu L B, Kaneko S, Matsuoka S (2005). Driving forces behind the stagnancy of China’s energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change. Energy Policy, 33(3): 319–335
https://doi.org/10.1016/j.enpol.2003.08.003
44 Xi F, Geng Y, Chen X, Zhang Y, Wang X, Xue B, Dong H, Liu Z, Ren W, Fujita T, Zhu Q (2011). Contributing to local policy making on GHG emission reduction through inventorying and attribution: a case study of Shenyang, China. Energy Policy, 39(10): 5999–6010
https://doi.org/10.1016/j.enpol.2011.06.063
45 Xia X H, Huang G T, Chen G Q, Zhang B, Chen Z M, Yang Q (2011). Energy security, efficiency and carbon emission of Chinese industry. Energy Policy, 39(6): 3520–3528
https://doi.org/10.1016/j.enpol.2011.03.051
46 Xu J H, Fleiter T, Eichhammer W, Fan Y (2012). Energy consumption and CO2 emissions in China’s cement industry: a perspective from LMDI decomposition analysis. Energy Policy, 50: 821–832
https://doi.org/10.1016/j.enpol.2012.08.038
47 Zhang M, Mu H, Ning Y (2009a). Accounting for energy-related CO2 emission in China, 1991–2006. Energy Policy, 37(3): 767–773
https://doi.org/10.1016/j.enpol.2008.11.025
48 Zhang M, Mu H, Ning Y, Song Y (2009b). Decomposition of energy-related CO2 emission over 1991–2006 in China. Ecol Econ, 68(7): 2122–2128
https://doi.org/10.1016/j.ecolecon.2009.02.005
49 Zhang Z, Guo J, Qian D, Xue Y, Cai L (2013). Effects and mechanism of influence of China’s resource tax reform: a regional perspective. Energy Econ, 36: 676–685
https://doi.org/10.1016/j.eneco.2012.11.014
50 Zhao M, Tan L, Zhang W, Ji M, Liu Y, Yu L (2010). Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy, 35(6): 2505–2510
https://doi.org/10.1016/j.energy.2010.02.049
[1] Mengyao HAN,Xi JI. Alternative industrial carbon emissions benchmark based on input-output analysis[J]. Front. Earth Sci., 2016, 10(4): 731-739.
[2] Xi JI, Zhanming CHEN, Jinkai LI. Embodied energy consumption and carbon emissions evaluation for urban industrial structure optimization[J]. Front Earth Sci, 2014, 8(1): 32-43.
[3] Haitao WEI, Dunsheng XIA, Fahu CHEN, Ming JIN, Haibin WANG, Jia JIA. Magnetic characteristics of topsoil from Xinjiang, Northwestern China, and their implications[J]. Front Earth Sci Chin, 2009, 3(3): 259-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed