Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (1) : 91-104    https://doi.org/10.1007/s11707-014-0445-8
REVIEW ARTICLE
A review of industrial symbiosis research: theory and methodology
Yan ZHANG(), Hongmei ZHENG, Bin CHEN(), Meirong SU, Gengyuan LIU
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
 Download: PDF(479 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The theory, methodologies, and case studies in the field of industrial symbiosis have been developing for nearly 30 years. In this paper, we trace the development history of industrial symbiosis, and review its current theoretical and methodological bases, as well as trends in current research. Based on the research gaps that we identify, we provide suggestions to guide the future development of this approach to permit more comprehensive analyses. Our theoretical review includes key definitions, a classification system, and a description of the formation and development mechanisms. We discuss methodological studies from the perspective of individual industrial metabolic processes and network analysis. Analyzing specific metabolic processes can help to characterize the exchanges of materials and energy, and to reveal the ecological performance and economic benefits of the symbiosis. Network analysis methods are increasingly being used to analyze both the structural and functional characteristics of a system. Our suggestions for future research focus on three aspects: how to quantitatively classify industrial symbiosis systems, monitor the dynamics of a developing industrial symbiosis system, and analyze its internal attributes more deeply.

Keywords industrial ecology      industrial symbiosis      industrial metabolism      network analysis     
Corresponding Author(s): Yan ZHANG,Bin CHEN   
Online First Date: 12 June 2014    Issue Date: 04 February 2015
 Cite this article:   
Yan ZHANG,Hongmei ZHENG,Bin CHEN, et al. A review of industrial symbiosis research: theory and methodology[J]. Front. Earth Sci., 2015, 9(1): 91-104.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0445-8
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I1/91
Fig.1  The connotation of industrial symbiosis.
Theoretical foundation Types of park based on that theory Typical examples from around the world
Location, history of formation and development (Chertow, 2007) Planned eco-industrial parks Tianjin (TEDA) (Shi et al., 2010)
Self-organizing eco-industrial parks Kalundborg (Chertow, 2007)
Development process (Yuan et al., 2004) Newly planned eco-industrial parks Choctaw (Potts Carr, 1998), Tianjin (TEDA) (Shi et al., 2010)
Transformed from existing groups of companies Guangxi Guigang (Zhu et al., 2007), Shandong Lubei (Chen et al., 2010)
Virtual eco-industrial parks Brownsville (Martin et al., 1996)
Industrial structure (Ministry of Environmental Protection of the People’s Republic of China, 2006a, 2006b, 2009) Sector-integrated park Tianjin (TEDA) (Shi et al., 2010)
Sector-specific park Shandong Lubei (Chen et al., 2010), Guangxi Guigang (Zhu et al., 2007)
Reuse and recycling park Choctaw (Potts Carr, 1998)
Relationships among members (Wang and Yin, 2005; Wang, 2009) Equality-oriented parks Burnside (Wright et al., 2009)
Single-dependency parks Guangxi Guigang (Zhu et al., 2007)
Multiple-dependency parks Kalundborg (Chertow, 2007)
Nested parks Styria (Schwarz and Steininger, 1997)
Use of the “key species” theory from research on natural systems Single dominant company in the park Guangxi Guigang (Zhu et al., 2007)
Two or more dominant companies in the park Kalundborg (Chertow, 2007)
Tab.1  Examples of industrial symbiosis complexes
Fig.2  A classification system including theories and the names of different types.
Fig.3  Diagrams of the theoretical framework, methods, indicators, and examples of typical case studies in the (a) industrial metabolism and (b) network analysis methods.
1 B Allenby, D Richards (1994). The Greening of Industrial Systems. Washington, DC: National Academy Press, 23–37
2 W S Ashton (2008). Understanding the organization of industrial ecosystems: a social network approach. J Ind Ecol, 12(1): 34–51
https://doi.org/10.1111/j.1530-9290.2008.00002.x
3 W S Ashton, A C Bain (2012). Assessing the “short mental distance in eco-industrial networks”. J Ind Ecol, 16(1): 70–82
https://doi.org/10.1111/j.1530-9290.2011.00453.x
4 R U Ayres (1988). Self organization in biology & economics. Laxenburg, Austria: International Institute for Applied Systems Analysis (IIASA) Research Report #RR-88-1
5 R U Ayres, U E Simonis (1994). Industrial Metabolism, Restructuring for Sustainable Development. Tokyo: United Nations University Press, 1–21
6 D Baird, B D Fath, R E Ulanowicz, H Asmus, R Asmus (2009). On the consequences of aggregation and balancing of networks on system properties derived from ecological network analysis. Ecol Modell, 220(23): 3465–3471
https://doi.org/10.1016/j.ecolmodel.2009.09.008
7 S K Behera, J H Kim, S Y Lee, S Suh, H S Park (2012). Evolution of ‘designed’ industrial symbiosis networks in the Ulsan Eco-industrial Park: ‘Research and development into business’ as the enabling framework. J Clean Prod, 29–30: 103–112
https://doi.org/10.1016/j.jclepro.2012.02.009
8 A Bodini, C Bondavalli (2002). Towards a sustainable use of water resources: a whole-ecosystem approach using network analysis. Int J Environ Pollut, 18(5): 463–485
https://doi.org/10.1504/IJEP.2002.002340
9 D J Chen (2003). Analysis, integration and complexity study of industrial ecosystems. Dissertation for Ph.D Degree. Beijing: Tsinghua University, Beijing (in Chinese)
10 L Chen, R S Wang, J X Yang, Y L Shi (2010). Structural complexity analysis for industrial ecosystems: a case study on Lubei industrial ecosystem in China. Ecol Complex, 7(2): 179–187
https://doi.org/10.1016/j.ecocom.2009.10.007
11 M Chertow, Y Miyata (2011). Assessing collective firm behavior: comparing industrial symbiosis with possible alternatives for individual companies in Oahu, HI. Bus Strategy Environ, 20(4): 266–280
https://doi.org/10.1002/bse.694
12 M R Chertow (1999). Industrial symbiosis: a multi-firm approach to sustainability. In: Proceedings of the 1999 Greening of Industry Network Conference, 8th, Chapel Hill, NC
13 M R Chertow (2000). Industrial symbiosis: literature and taxonomy. Annu Rev Energy Environ, 25(1): 313–337
https://doi.org/10.1146/annurev.energy.25.1.313
14 M R Chertow (2007). “Uncovering” industrial symbiosis. J Ind Ecol, 11(1): 11–30
https://doi.org/10.1162/jiec.2007.1110
15 M R Chertow, D R Lombardi (2005). Quantifying economic and environmental benefits of co-located firms. Environ Sci Technol, 39(17): 6535–6541
https://doi.org/10.1021/es050050+ pmid: 16190209
16 R R Christian, M M Brinson, J K Dame, G Johnson, C H Peterson, D Baird (2009). Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary. Ecol Modell, 220(22): 3113–3122
https://doi.org/10.1016/j.ecolmodel.2009.07.012
17 R R Christian, J J Luczkovich (1999). Organizing and understanding a winter’s seagrass foodweb network through effective trophic levels. Ecol Modell, 117(1): 99–124
https://doi.org/10.1016/S0304-3800(99)00022-8
18 E Cohen-Rosenthal, T McGilliard, M Bell (1997). Designing eco-industrial parks: the US experience.
19 I Costa, P Ferrão (2010). A case study of industrial symbiosis development using a middle-out approach. J Clean Prod, 18(10–11): 984–992
https://doi.org/10.1016/j.jclepro.2010.03.007
20 R P Côté, E Cohen-Rosenthal (1998). Designing eco-industrial parks: a synthesis of some experiences. J Clean Prod, 6(3–4): 181–188
https://doi.org/10.1016/S0959-6526(98)00029-8
21 T J Dai (2010). Two quantitative indices for the planning and evaluation of eco-industrial parks. Resour Conserv Recy, 54(7): 442–448
22 J K Dame, R R Christian (2008). Evaluation of ecological network analysis: validation of output. Ecol Modell, 210(3): 327–338
https://doi.org/10.1016/j.ecolmodel.2007.08.004
23 C D Darlington (1951). Mendel and the determinants. In: L C Dunn ed. Genetics in the Twentieth Century. New York: Macmillan, 315–332
24 P Desrochers (2004). Industrial symbiosis: the case for market coordination. J Clean Prod, 12(8–10): 1099–1110
https://doi.org/10.1016/j.jclepro.2004.02.008
25 D Dolginow (2011). Why product metabolism is every startup’s first KPI.
26 T Doménech, M Davies (2009). The social aspects of industrial symbiosis: the application of social network analysis to industrial symbiosis network s. Progr Ind Ecol Internat J, 6(1): 68–99
https://doi.org/10.1504/PIE.2009.026583
27 T Doménech, M Davies (2011a). Structure and morphology of industrial symbiosis networks: the case of Kalundborg. Procedia Soc Behav Sci, 10: 79–89
https://doi.org/10.1016/j.sbspro.2011.01.011
28 T Doménech, M Davies (2011b). The role of embeddedness in industrial symbiosis networks: phases in the evolution of industrial symbiosis networks. Bus Strategy Environ, 20(5): 281–296
https://doi.org/10.1002/bse.695
29 L Dong, T Fujita, H Zhang, M Dai, M Fujii, S Ohnishi, Y Geng, Z Liu (2013). Promoting low-carbon city through industrial symbiosis: a case in China by applying HPIMO model. Energy Policy, 61: 864–873
https://doi.org/10.1016/j.enpol.2013.06.084
30 L Dong, F Gu, T Fujita, Y Hayashi, J Gao (2014). Uncovering opportunity of low-carbon city promotion with industrial system innovation: case study on industrial symbiosis projects in China. Energy Policy, 65: 388–397
https://doi.org/10.1016/j.enpol.2013.10.019
31 L Dougherty (1997). Denmark shows the way.
32 J Ehrenfeld, M Chertow (2002). Industrial symbiosis: the legacy of Kalundborg. In: R Ayres, L Ayres eds. Cheltenham: Handbook of Industrial Ecology
33 J Ehrenfeld, N Gertler (1997). Industrial ecology in practice: the evolution of interdependence at Kalundborg. J Ind Ecol, 1(1): 67–79
https://doi.org/10.1162/jiec.1997.1.1.67
34 L B Elabras Veiga, A Magrini (2009). Eco-industrial park development in Rio de Janeiro, Brazil: a tool for sustainable development. J Clean Prod, 17(7): 653–661
https://doi.org/10.1016/j.jclepro.2008.11.009
35 Encyclopedia Britannica (1992). Symbiosis. In: The New Encyclopedia Britannica. Encyclopedia Britannica Inc., London, UK. Vol. 14
36 H Engberg (1992). Industrial Symbiosis in Denmark. New York: Leonard N. Stern School of Business
37 B D Fath, B C Patten (1998). Network synergism: emergence of positive relations in ecological systems. Ecol Modell, 107(2–3): 127–143
https://doi.org/10.1016/S0304-3800(97)00213-5
38 B D Fath, B C Patten (1999). Review of the foundations of network environ analysis. Ecosystems (N Y), 2(2): 167–179
https://doi.org/10.1007/s100219900067
39 L Feng, B S Sun (2009). Optimization of industrial symbiosis networks in acid areas. Arid Land Geogr, 32(6): 971–977 (in Chinese)
40 R A Frosch, N Gallopoulos (1989). Strategies for manufacturing. Sci Am, 261(3): 144–152
https://doi.org/10.1038/scientificamerican0989-144
41 N Gertler, J R Ehrenfeld (1996). A down-to-earth approach to clean production. Technol Rev, 99(2): 48–54
42 D A Giacomo, F D N Maria (2011). Italy’s urban waste metabolism.
43 D Gibbs, P Deutz (2007). Reflections on implementing industrial ecology through eco-industrial park development. J Clean Prod, 15(17): 1683–1695
https://doi.org/10.1016/j.jclepro.2007.02.003
44 A Golev, G D Corder (2012). Developing a classification system for regional resource synergies. Miner Eng, 29: 58–64
https://doi.org/10.1016/j.mineng.2011.10.018
45 V Gonela, J Zhang (2014). Design of the optimal industrial symbiosis system to improve bioethanol production. J Clean Prod, 64(1): 513–534
https://doi.org/10.1016/j.jclepro.2013.07.059
46 N Goto, J Tachibana, K Fujie (2005). Environmental management system based on material flow analysis to establish and maintain eco town. J Ind Eng Chem, 11(6): 818–825
47 T Graedel, B R Allenby (1995). Industrial Ecology. New Jersey: Prentice-Hall, 217–233
48 X Guo, S H Zhong (2005). The model of eco-industrial parks based on the theory of species. Sci Technol Progr Policy, 23(8): 75–77 (in Chinese)
49 E Harper, T Graedel (2004). Industrial ecology: a teenager’s progress. Technol Soc, 26(2–3): 433–445
https://doi.org/10.1016/j.techsoc.2004.01.013
50 R R Heeres, W J V Vermeulen, F B D de Walle (2004). Eco-industrial park initiatives in the USA and the Netherlands: first lessons. J Clean Prod, 12(8–10): 985–995
https://doi.org/10.1016/j.jclepro.2004.02.014
51 N B Jacobsen (2006). Industrial symbiosis in Kalundborg, Denmark: a quantitative assessment of economic and environmental aspects. J Ind Ecol, 10(1–2): 239–255
52 J Korhonen (2004). Industrial ecology in the strategic sustainable development model: strategic applications of industrial ecology. J Clean Prod, 12(8–10): 809–823
https://doi.org/10.1016/j.jclepro.2004.02.026
53 J Kronenberg (2007). Ecological Economics and Industrial Ecology: A Case Study of the Integrated Product Policy of the European Union (Routledge Explorations in Environmental Economics). U.K.: Routledge, 88–127
54 B Kurup, W Altham, R van Berkel (2005). Triple bottom line accounting applied for industrial symbiosis. In: The 4th Australian Conference on Life Cycle Assessment. Australian Life Cycle Assessment Society, Sydney
55 A J D Lambert, F A Boons (2002). Eco-industrial parks: stimulating sustainable development in mixed industrial parks. Technovation, 22(8): 471–484
https://doi.org/10.1016/S0166-4972(01)00040-2
56 S Li, Y Zhang, Z Yang, H Liu, J Zhang (2012). Ecological relationship analysis of the urban metabolic system of Beijing, China. Environ Pollut, 170: 169–176
https://doi.org/10.1016/j.envpol.2012.07.010 pmid: 22819953
57 E A Lowe (1997). Creating by-product resource exchanges: strategies for eco-industrial parks. J Clean Prod, 5(1–2): 57–65
https://doi.org/10.1016/S0959-6526(97)00017-6
58 E A Lowe, L Evans (1995). Industrial ecology and industrial ecosystems. J Clean Prod, 3(1–2): 47–53
https://doi.org/10.1016/0959-6526(95)00045-G
59 E A Lowe, S R Moran, D B Holmes (1998). Eco-industrial Parks: A Handbook for Local Development teams, Draft. Indigo Development, RPP International, Oakland, CA
60 Y Lu, M R Su, G R Liu, B Chen, S Y Zhou, M M Jiang (2012). Ecological network analysis for a low-carbon and high-tech industrial park. The Scientific World Journal, 305474
https://doi.org/10.1100/2012/305474
61 D Marinova, D Annandale, J Phillimore (2006). The International Handbook on Environmental Technology Management. Northampton, MA: Edward Elgar Publishing Limited, 13–32
62 S A Martin, A Weitz, R Cushman, A Sharma, R C Lindrooth, S R Moran (1996). Eco-Industrial Parks: A Case Study and Analysis of Economic, Environmental, Technical, and Regulatory Issues. Research Triangle Institute, Research Triangle Park, NC. Project Number 6050 FR
63 A Meneghetti, G Nardin (2012). Enabling industrial symbiosis by a facilities management optimization approach. J Clean Prod, 35: 263–273
https://doi.org/10.1016/j.jclepro.2012.06.002
64 Ministry of Environmental Protection of the People’s Republic of China (2006a). Standard for Sector-specific Eco-industrial Parks (On Trial). Available at: (2014-April)
65 Ministry of Environmental Protection of the People’s Republic of China (2006b). Standard for Venous Industry Based Eco-industrial Parks (On Trial).
66 Ministry of Environmental Protection of the People’s Republic of China (2009). Standard for Sector-integrate Eco-industrial Parks.
67 M Mirata, T Emtairah (2005). Industrial symbiosis networks and the contribution to environmental innovation: the case of the Landskrona industrial symbiosis programme. J Clean Prod, 13(10–11): 993–1002
https://doi.org/10.1016/j.jclepro.2004.12.010
68 S Ohnishi, T Fujita, X D Chen, M Fujii (2012). Econometric analysis of the performance of recycling projects in Japanese eco-towns. J Clean Prod, 33: 217–225
https://doi.org/10.1016/j.jclepro.2012.03.027
69 R T Paine (1969). A note on trophic complexity and community stability. Am Nat, 103(929): 91–93
https://doi.org/10.1086/282586
70 R Paquin, J Howard-Grenville (2009). Facilitating regional industrial symbiosis: network growth in the UK’s National Industrial Symbiosis Programme. In: F Boons, J, Howard-Grenville eds. The Social Embeddedness of Industrial Ecology. Cheltenham: Edward Elgar, 103–127
71 H S Park, E R Rene, S M Choi, A S Chiu (2008). Strategies for sustainable development of industrial park in Ulsan, South Korea—From spontaneous evolution to systematic expansion of industrial symbiosis. J Environ Manage, 87(1): 1–13
https://doi.org/10.1016/j.jenvman.2006.12.045 pmid: 17337322
72 B C Patten (1982). Environs-relativistic elementary-particles for ecology. Am Nat, 119(2): 179–219
https://doi.org/10.1086/283903
73 D Pauly, V Christensen, J Dalsgaard, R Froese, F Torres Jr (1998). Fishing down marine food webs. Science, 279(5352): 860–863
https://doi.org/10.1126/science.279.5352.860 pmid: 9452385
74 E Pedersen (1999). Remarks. In: P Allen, C Bonazzi, D, Gee eds. Metaphors for Change: Partnerships, Tools and Civic Action for Sustainability. Sheffield: Greenleaf Publishing, 97–100
75 A J Potts Carr (1998). Choctaw eco-industrial park: an ecological approach to industrial land-use planning and design. Landsc Urban Plan, 42(2–4): 239–257
https://doi.org/10.1016/S0169-2046(98)00090-5
76 G T Renner (1947). Geography of industrial localization. Econ Geogr, 23(3): 167–189
https://doi.org/10.2307/141510
77 M Sato, Y Ushiro, H Matsunaga (2004). Categorisation of eco-town projects in Japan. In: International Symposium on Green Technology for Resources and Materials Recycling, Seoul, Korea
78 M Schlarb (2001). Eco-industrial Development: A Strategy for Building Sustainable Communities. Ithaca, NY: Cornell University
79 E J Schwarz, K W Steininger (1997). Implementing nature’s lesson: the industrial recycling network enhancing regional development. J Clean Prod, 5(1–2): 47–56
https://doi.org/10.1016/S0959-6526(97)00009-7
80 J Scott (2000). Social Network Analysis: A Handbook. London, U.K.: Sage Publications
81 C Sendra, X Gabarrell, T Vicent (2007). Material flow analysis adapted to an industrial area. J Clean Prod, 15(17): 1706–1715
https://doi.org/10.1016/j.jclepro.2006.08.019
82 H Shi, M Chertow, Y Y Song (2010). Developing country experience with eco-industrial parks: a case study of the Tianjin Economic-Technological Development Area in China. J Clean Prod, 18(3): 191–199
https://doi.org/10.1016/j.jclepro.2009.10.002
83 X L Song, L Chen, Q Song (2008). Study on development models of eco-industrial parks: based on food chain types. Resour Devel Market, 2008(10): 918–921 (in Chinese)
84 J Szyrmer, R E Ulanowicz (1987). Total flows in ecosystems. Ecol Modell, 35(1–2): 123–136
https://doi.org/10.1016/0304-3800(87)90094-9
85 J P Tian, W Liu, B J Lai, X Li, L J Chen (2013). Study of the performance of eco-industrial park development in China. J Clean Prod, 64(1): 486–494
86 J P Tian, H Shi, Y Chen, L J Chen (2012). Assessment of industrial metabolisms of sulfur in a Chinese fine chemical industrial park. J Clean Prod, 32: 262–272
https://doi.org/10.1016/j.jclepro.2012.04.001
87 R van Berkel, T Fujita, S Hashimoto, M Fujii (2009). Quantitative assessment of urban and industrial symbiosis in Kawasaki, Japan. Environ Sci Technol, 43(5): 1271–1281
https://doi.org/10.1021/es803319r pmid: 19350890
88 G J Venta, M Nisbet (1997). Opportunities for industrial ecological parks in Canada , case study: Sarnia–Lambton Industrial Complex. Environment Canada, Ottawa
89 C Walters, V Christensen, D Pauly (1997). Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Rev Fish Biol Fish, 7(2): 139–172
https://doi.org/10.1023/A:1018479526149
90 Q Wang (2009). Industrial symbiosis model analysis for eco-industrial parks. Sci Tech Inf Gansu, 38(5): 72–73 (in Chinese)
91 Z Wang, L Shi, X P Jia (2009). Weighted connectance for industrial communities based on structural holes theory. Acta Ecol Sin, 29(2): 810–814 (in Chinese)
92 Z H Wang, J H Yin (2005). Research on operation pattern of industrial symbiosis network in eco-industry park. China Soft Sci, 2005(2): 80–85 (in Chinese)
93 S J Whipple, S R Borrett, B C Patten, D K Gattie, J R Schramski, S A Bata (2007). Indirect effects and distributed control in ecosystems: comparative network environ analysis of a seven-compartment model of nitrogen flow in the Neuse River estuary , USA—Time series analysis. Ecol Modell, 206(1–2): 1–17
https://doi.org/10.1016/j.ecolmodel.2007.03.002
94 A Wolf, M Eklund, M Söderstrom (2007). Developing integration in a local industrial ecosystem: an explorative approach. Bus Strategy Environ, 16(6): 442–455
https://doi.org/10.1002/bse.485
95 R A Wright, R P Côté, J Duffy, J Brazner (2009). Diversity and connectance in an industrial context: the case of Burnside Industrial Park. J Ind Ecol, 13(4): 551–564
https://doi.org/10.1111/j.1530-9290.2009.00141.x
96 X F Xia, H Y Xie, T Xie, R T Hai (2006). Product metabolism in aluminum eco-industrial park of Baotou. Environ Sci Technol, 29(9): 62–63 (in Chinese)
97 S L Yang, N P Feng (2008). A case study of industrial symbiosis: Nanning Sugar Co., Ltd. in China. Resour Conserv Recycling, 52(5): 813–820
https://doi.org/10.1016/j.resconrec.2007.11.008
98 Z W Yuan, J Bi, X Y Wang, B Zhang, J Huang (2004). Theory and control mechanism of eco-industrial parks. Acta Ecol Sin, 24(11): 2501–2508 (in Chinese)
99 Z W Yuan, L Shi (2009). Improving enterprise competitive advantage with industrial symbiosis: case study of a smeltery in China. J Clean Prod, 17(14): 1295–1302
https://doi.org/10.1016/j.jclepro.2009.03.016
100 H Zhang, L Dong, H Q Li, T Fujita, S Ohnishi, Q Tang (2013a). Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: a case study with carbon flow analysis. Energy Policy, 61: 1400–1411
https://doi.org/10.1016/j.enpol.2013.05.066
101 Y Zhang (2013). Urban metabolism: a review of research methodologies. Environ Pollut, 178: 463–473
https://doi.org/10.1016/j.envpol.2013.03.052 pmid: 23619057
102 Y Zhang, Z Yang, B D Fath (2010a). Ecological network analysis of an urban water metabolic system: model development, and a case study for Beijing. Sci Total Environ, 408(20): 4702–4711
https://doi.org/10.1016/j.scitotenv.2010.06.019 pmid: 20621333
103 Y Zhang, Z F Yang, B D Fath, S S Li (2010b). Ecological network analysis of an urban energy metabolic system: model development, and a case study of four Chinese cities. Ecol Modell, 221(16): 1865–1879
https://doi.org/10.1016/j.ecolmodel.2010.05.006
104 Y Zhang, H M Zheng, B Chen, N J Yang (2013b). Social network analysis and network connectedness analysis for industrial symbiotic systems: model development and case study. Front Earth Sci, 7(2): 169–181
https://doi.org/10.1007/s11707-012-0349-4
105 H M Zheng, Y Zhang, Z F Yang, G Y Liu, M Y Su, B Chen (2013). Exploring improvement paths for eight industrial symbiosis complexes throughout the world. J Environ Account Manage, 1: 295–306
106 Q E Zhu, E A Lowe, Y Wei, D Barnes (2007). Industrial symbiosis in China: a case study of the Guitang Group. J Ind Ecol, 11(1): 31– 42
https://doi.org/10.1162/jiec.2007.929
[1] Yan ZHANG,Hongmei ZHENG,Han SHI,Xiangyi YU,Gengyuan LIU,Meirong SU,Yating LI,Yingying CHAI. Network analysis of eight industrial symbiosis systems[J]. Front. Earth Sci., 2016, 10(2): 352-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed