| 1 |
M Abu-Taleb, B Mareschal (1995). Water resources planning in the Middle East: application of the PROMETHEE V multicriteria method. Eur J Oper Res, 81(3): 500–511
https://doi.org/10.1016/0377-2217(94)00007-Y
|
| 2 |
S Ahmed, A J King, G Parija (2003). A multi-stage stochastic integer programming approach for capacity expansion under uncertainty. J Glob Optim, 26(1): 3–24
https://doi.org/10.1023/A:1023062915106
|
| 3 |
T Akter, S P Simonovic (2005). Aggregation of fuzzy views of a large number of stakeholders for multi-objective flood management decision-making. J Environ Manage, 77(2): 133–143
https://doi.org/10.1016/j.jenvman.2005.02.015
|
| 4 |
V M Albornoz, P Benario, M E Rojas (2004). A two-stage stochastic integer programming model for a thermal power system expansion. Int Trans Oper Res, 11(3): 243–257
https://doi.org/10.1111/j.1475-3995.2004.00456.x
|
| 5 |
G Alefeld, J Herzberger (1983). Introductions to Interval Computations. New York: Academic Press, 67
|
| 6 |
F Almadizar, M Ghazanfari, Fatemi S M T Ghomi (2009). Application of chance-constrained programming for stochastic group shop scheduling problem. Int J Adv Manuf Technol, 42(3–4): 321–334
https://doi.org/10.1007/s00170-008-1594-2
|
| 7 |
S R Arora, R Gupta (2009). Interactive fuzzy goal programming approach for bilevel programming problem. Eur J Oper Res, 194(2): 368–376
https://doi.org/10.1016/j.ejor.2007.12.019
|
| 8 |
K B Aviso, R R Tan, A B Culaba, J B Cruz Jr (2010). Bi-level fuzzy optimization approach for water exchange in eco-industrial parks. Process Saf Environ Prot, 88(1): 31–40
https://doi.org/10.1016/j.psep.2009.11.003
|
| 9 |
C Bao, C L Fang (2007). Water resources constraint force on urbanization in water deficient regions: a case study of the Hexi Corridor, arid area of NW China. Ecol Econ, 62(3–4): 508–517
https://doi.org/10.1016/j.ecolecon.2006.07.013
|
| 10 |
B Bass, G H Huang, J Russo (1997). Incorporation climate change into risk assessment using grey mathematical programming. J Environ Manage, 49(1): 107–123
https://doi.org/10.1006/jema.1996.0119
|
| 11 |
E M L Beale (1955). On minimizing a convex function subject to linear inequalities. J R Stat Soc, B, 17(2): 173–184
|
| 12 |
R Bellman, L A Zadeh (1970). Decision-making in a fuzzy environment. Manage Sci, 17(4): 141–164
https://doi.org/10.1287/mnsc.17.4.B141
|
| 13 |
F Ben Abdelaziz, H Masri (2009). Multistage stochastic programming with fuzzy probability distribution. Fuzzy Sets Syst, 160(22): 3239–3249
https://doi.org/10.1016/j.fss.2008.10.010
|
| 14 |
M J Bender, S P Simonovic (2000). A fuzzy compromise approach to water resource systems planning under uncertainty. Fuzzy Sets Syst, 115(1): 35–44
https://doi.org/10.1016/S0165-0114(99)00025-1
|
| 15 |
P Beraldi, R Musmanno, C Triki (2000). Solving stochastic linear programs with restricted recourse using interior point methods. Comput Optim Appl, 15(3): 215–234
https://doi.org/10.1023/A:1008772217145
|
| 16 |
J R Birge, F Louveaux (1997). Introduction to Stochastic Programming. New York: Springer, 24
|
| 17 |
J R Birge, F V Louveaux (1988). A multicut algorithm for two-stage stochastic linear programs. Eur J Oper Res, 34(3): 384–392
https://doi.org/10.1016/0377-2217(88)90159-2
|
| 18 |
P Bosch, A Jofré, R Schultz (2007). Two-stage stochastic programs with mixed probabilities. SIAM J Optim, 18(3): 778–788
https://doi.org/10.1137/050648754
|
| 19 |
J J Buckley, T Feuring (2000). Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming. Fuzzy Sets Syst, 109(1): 35–53
https://doi.org/10.1016/S0165-0114(98)00022-0
|
| 20 |
Y P Cai, G H Huang, Q G Lin, X H Nie, Q Tan (2009c). An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty. Expert Syst Appl, 36(2): 3470–3482
https://doi.org/10.1016/j.eswa.2008.02.036
|
| 21 |
Y P Cai, G H Huang, H W Lu, Z F Yang, Q Tan (2009d). I-VFRP: an interval-valued fuzzy robust programming approach for municipal waste management planning under uncertainty. Eng Optim, 41(5): 399–418
https://doi.org/10.1080/03052150802488381
|
| 22 |
Y P Cai, G H Huang, X H Nie, Y P Li, Q Tan (2007). Municipal solid waste management under uncertainty: a mixed interval parameter fuzzy-stochastic robust programming approach. Environ Eng Sci, 24(3): 338–352
https://doi.org/10.1089/ees.2005.0140
|
| 23 |
Y P Cai, G H Huang, Q Tan (2009b). An inexact optimization model for regional energy systems planning in the mixed stochastic and fuzzy environment. Int J Energy Res, 33(5): 443–468
https://doi.org/10.1002/er.1483
|
| 24 |
Y P Cai, G H Huang, Q Tan, B Chen (2011). Identification of optimal strategies for improving eco-resilience to floods in ecologically vulnerable regions of a wetland. Ecol Modell, 222(2): 360–369
https://doi.org/10.1016/j.ecolmodel.2009.12.012
|
| 25 |
Y P Cai, G H Huang, Q Tan, Z F Yang (2009e). Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment. Renew Energy, 34(7): 1833–1847
https://doi.org/10.1016/j.renene.2008.11.024
|
| 26 |
Y P Cai, G H Huang, Z F Yang, Q G Lin, Q Tan (2009a). Community-scale renewable energy systems planning under uncertainty — An interval chance-constrained programming approach. Renew Sustain Energy Rev, 13(4): 721–735
https://doi.org/10.1016/j.rser.2008.01.008
|
| 27 |
Y P Cai, G H Huang, Z F Yang, W Sun, B Chen (2009f). Investigation of public’s perception towards rural sustainable development based on a two-level expert system. Expert Syst Appl, 36(5): 8910–8924
https://doi.org/10.1016/j.eswa.2008.11.032
|
| 28 |
Y P Cai, G H Huang, Z F Yang, Q Tan (2009g). Identification of optimal strategies for energy management systems planning under multiple uncertainties. Appl Energy, 86(4): 480–495
https://doi.org/10.1016/j.apenergy.2008.09.025
|
| 29 |
L Campos, J L Verdegay (1989). Linear programming problems and ranking of fuzzy numbers. Fuzzy Sets Syst, 32(1): 1–11
https://doi.org/10.1016/0165-0114(89)90084-5
|
| 30 |
C W Cao, X S Gu, Z Xin (2009). Chance constrained programming models for refinery short-term crude oil scheduling problem. Appl Math Model, 33(3): 1696–1707
https://doi.org/10.1016/j.apm.2008.03.022
|
| 31 |
N Carter, R D Kreutzwiser, R C de Loë (2005). Closing the circle: linking land use planning and water management. Land Use Policy, 22(2): 115–127
https://doi.org/10.1016/j.landusepol.2004.01.004
|
| 32 |
A Castelletti, F Pianosi, R Soncini-Sessa (2008). Integration, participation and optimal control in water resources planning and management. Appl Math Comput, 206(1): 21–33
https://doi.org/10.1016/j.amc.2007.09.069
|
| 33 |
S Chanas, D Kuchta (1996). Multiobjective programming in optimization of interval objective functions — A generalized approach. Eur J Oper Res, 94(3): 594–598
https://doi.org/10.1016/0377-2217(95)00055-0
|
| 34 |
N B Chang, E A Hernandez (2008). Optimal expansion strategy for a sewer system under uncertainty. Environ Model Assess, 13(1): 93–113
https://doi.org/10.1007/s10666-007-9084-8
|
| 35 |
N B Chang, S F Wang (1995). A grey nonlinear programming approach for planning coastal wastewater treatment and disposal systems. Water Sci Technol, 32(2): 19–29
https://doi.org/10.1016/0273-1223(95)00565-5
|
| 36 |
N B Chang, C G Wen, Y L Chen, Y C Yong (1996). A grey fuzzy multiobjective programming approach for the optimal planning of a reservoir watershed, Part A: theoretical development. Water Res, 30(10): 2329–2334
https://doi.org/10.1016/0043-1354(96)00124-8
|
| 37 |
A Charnes, W W Cooper, G H Symonds (1958). Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manage Sci, 4(3): 235–263
https://doi.org/10.1287/mnsc.4.3.235
|
| 38 |
M J Chen, G H Huang (2001). A derivative algorithm for inexact quadratic program — Application to environmental decision-making under uncertainty. Eur J Oper Res, 128(3): 570–586
https://doi.org/10.1016/S0377-2217(99)00374-4
|
| 39 |
S H Chen, J Wu (2004). Interval optimization of dynamic response for structure with interval parameters. Comput Struc, 82(1): 1–11
https://doi.org/10.1016/j.compstruc.2003.09.001
|
| 40 |
W Q Chen, M Sim, J Sun, C P Teo (2010). From CVaR to uncertainty set: implications in joint chance-constrained optimization. Oper Res, 58(2): 470–485
https://doi.org/10.1287/opre.1090.0712
|
| 41 |
Y Chen, D Marc Kilgour, K W Hipe (2006). Multiple criteria classification with an application in water resources planning. Comput Oper Res, 33(11): 3301–3323
https://doi.org/10.1016/j.cor.2005.03.026
|
| 42 |
S Cheng, C W Chan, G H Huang (2003). An integrated multi-criteria decision analysis and inexact mixed integer linear programming approach for solid waste management. Eng Appl Artif Intell, 16(5–6): 543–554
https://doi.org/10.1016/S0952-1976(03)00069-1
|
| 43 |
R K Cheung, C Y Chen (1998). A two-stage stochastic network model and solution methods for the dynamic empty container allocation problem. Transport Sci, 32(2): 142–162
https://doi.org/10.1287/trsc.32.2.142
|
| 44 |
G F Chi (1997). Integrated Planning of a Solid Waste Management System in the City of Regina. MASc Thesis, University of Regina, Regina, Saskatchewan, Canada, 23, 25, and 31
|
| 45 |
G M Cho (2005). Log-barrier method for two-stage quadratic stochastic programming. Appl Math Comput, 164(1): 45–69
https://doi.org/10.1016/j.amc.2004.04.095
|
| 46 |
C Dai, X H Cai, Y P Cai, Q Huo, Y Lv, G H Huang (2014). An interval-parameter mean-CVaR two-stage stochastic programming approach for waste management under uncertainty. Stochastic Environ Res Risk Assess, 28(2): 167–187
https://doi.org/10.1007/s00477-013-0738-6
|
| 47 |
K Darby-Downman, S Barker, E Audsley, D Parsons (2002). A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture. J Oper Res Soc, 51(1): 83–89
|
| 48 |
E Davila, N B Chang (2005). Sustainable pattern analysis of a publicly owned recycling recovery facility in a fast-growing urban setting under uncertainty. J Environ Manage, 75(4): 337–351
https://doi.org/10.1016/j.jenvman.2004.11.016
|
| 49 |
E Davila, N B Chang, S Diwakaruni (2005). Landfill space consumption dynamics in the Lower Rio Grande Valley by grey integer programming-based games. J Environ Manage, 75(4): 353–365
https://doi.org/10.1016/j.jenvman.2004.11.015
|
| 50 |
C Dong, G H Huang, Y P Cai, Y Liu (2012). An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city. Energy, 37(1): 673–688
https://doi.org/10.1016/j.energy.2011.10.030
|
| 51 |
C Dong, G H Huang, Y P Cai, Y Liu (2013). Robust planning of energy management systems with environmental and constraint-conservative considerations under multiple uncertainties. Energy Convers Manage, 65: 471–486
https://doi.org/10.1016/j.enconman.2012.09.001
|
| 52 |
X P Du, A Sudjianto, B Q Huang (2005). Reliability-based design with the mixture of random and interval variables. J Mech Des, 127(6): 1068–1076
https://doi.org/10.1115/1.1992510
|
| 53 |
D Dubois, H Prade (1988). Possibility Theory: An Approach to Computerized Processing of Uncertainty. New York: Plenum Press, 102
|
| 54 |
D Dubois, H Prade, R Sabbadin (2001). Decision-theoretic foundations of qualitative possibility theory. Eur J Oper Res, 128(3): 459–478
https://doi.org/10.1016/S0377-2217(99)00473-7
|
| 55 |
N C P Edirisinghe, W T Ziemba (1994). Bounds for two-stage stochastic programs with fixed recourse. Math Oper Res, 19(2): 292–313
https://doi.org/10.1287/moor.19.2.292
|
| 56 |
J H Ellis (1991). Stochastic programs for identifying critical structural collapse mechanisms. Appl Math Model, 15(7): 367–373
https://doi.org/10.1016/0307-904X(91)90062-T
|
| 57 |
J H Ellis, E A McBean, G J Farquhar (1985). Chance-constrained/stochastic linear programming model for acid rain abatement-I. Complete and noncolinearity. Atmos Environ, 19(6): 925–937
https://doi.org/10.1016/0004-6981(85)90238-0
|
| 58 |
J H Ellis, E A McBean, G J Farquhar (1986). Chance-constrained stochastic linear programming model for acid rain abatement-II. Limited colinearity. Atmos Environ, 20(3): 501–511
https://doi.org/10.1016/0004-6981(86)90090-9
|
| 59 |
P Fortemps, M Roubens (1996). Ranking and defuzzification methods based on area compensation. Fuzzy Sets Syst, 82(3): 319–330
https://doi.org/10.1016/0165-0114(95)00273-1
|
| 60 |
M Fortin, E A McBean (1983). A management model for acid rain abatement. Atmos Environ, 17(11): 2331–2336
https://doi.org/10.1016/0004-6981(83)90232-9
|
| 61 |
A Ganji, D Khalili, M Karamouz, K Ponnambalam, M Javan (2008). A fuzzy stochastic dynamic nash game analysis of policies for managing water allocation in a reservoir system. Water Resour Manage, 22(1): 51–66
https://doi.org/10.1007/s11269-006-9143-y
|
| 62 |
J M Guldmann (1986). Interactions between weather stochasticity and the locations of pollution sources and receptors in air quality planning: a chance-constrained approach. Geogr Anal, 18(3): 198–214
https://doi.org/10.1111/j.1538-4632.1986.tb00093.x
|
| 63 |
P Guo, G H Huang, L He, B W Sun (2008). ITSSIP: interval-parameter two-stage stochastic semi-infinite programming for environmental management under uncertainty. Environ Model Softw, 23(12): 1422–1437
https://doi.org/10.1016/j.envsoft.2008.04.009
|
| 64 |
P Guo, G H Huang, Y P Li (2010). An inexact fuzzy-chance-constrained two-stage mixed-integer linear programming approach for flood diversion planning under multiple uncertainties. Adv Water Resour, 33(1): 81–91
https://doi.org/10.1016/j.advwatres.2009.10.009
|
| 65 |
C Z Gurgur, J T Luxhoj (2003). Application of chance-constrained programming to capital rationing problems with asymmetrically distributed cash flows and available budget. Eng Economist, 48(3): 241–258
https://doi.org/10.1080/00137910308965064
|
| 66 |
J L Higle, S Sen (1991). Stochastic decomposition: an algorithm for two-stage linear programs with recourse. Math Oper Res, 16(3): 650–669
https://doi.org/10.1287/moor.16.3.650
|
| 67 |
G H Huang, B W Baetz, G G Patry (1992). A grey linear programming approach for municipal solid waste management planning under uncertainty. Civ Eng Syst, 9(4): 319–335
https://doi.org/10.1080/02630259208970657
|
| 68 |
G H Huang, B W Baetz, G G Patry (1993). A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty. Civ Eng Syst, 10(2): 123–146
https://doi.org/10.1080/02630259308970119
|
| 69 |
G H Huang, B W Baetz, G G Patry (1995a). Grey fuzzy integer programming: an application to regional waste management planning under uncertainty. Socioecon Plann Sci, 29(1): 17–38
https://doi.org/10.1016/0038-0121(95)98604-T
|
| 70 |
G H Huang, B W Baetz, G G Patry (1995b). Grey integer programming: an application to waste management planning under uncertainty. Eur J Oper Res, 83(3): 594–620
https://doi.org/10.1016/0377-2217(94)00093-R
|
| 71 |
G H Huang, B W Baetz, G G Patry (1995c). Grey quadratic programming and its application to municipal waste management planning under uncertainty. Eng Optim, 23(3): 201–223
https://doi.org/10.1080/03052159508941354
|
| 72 |
G H Huang, B W Baetz, G G Patry (1996a). A grey hop, skip, and jump approach: generating alternatives for expansion planning of waste management facilities. Can J Civ Eng, 23(6): 1207–1219
https://doi.org/10.1139/l96-930
|
| 73 |
G H Huang, G F Chi, Y P Li (2005b). Long-term planning of an integrated solid waste management system under uncertainty- II. A North American case study. Environ Eng Sci, 22(6): 835–853
https://doi.org/10.1089/ees.2005.22.835
|
| 74 |
G H Huang, J D Linton, J S Yeomans, R Yoogalingam (2005a). Policy planning under uncertainty: efficient starting populations for simulation-optimization methods applied to municipal solid waste management. J Environ Manage, 77(1): 22–34
https://doi.org/10.1016/j.jenvman.2005.02.008
|
| 75 |
G H Huang, D P Loucks (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civ Eng Environ Syst, 17(2): 95–118
https://doi.org/10.1080/02630250008970277
|
| 76 |
G H Huang, Y Y Yin, S J Cohen, B Bass (1995d). Interval parameter modelling to generate alternatives: a software for environmental decision-making under certainty. In: C A Brebbia, eds. Computer Techniques in Environmental Studies. Southampton: Computational Mechanics Publications, 213–223
|
| 77 |
X X Huang (2007). Chance-constrained programming models for capital budgeting with NPV as fuzzy parameters. J Comput Appl Math, 198(1): 149–159
https://doi.org/10.1016/j.cam.2005.11.026
|
| 78 |
Y F Huang, G H Huang, Z Y Hu, I Maqsood, A Chakma (2005c). Development of an expert system for tackling the public’s perception to climate-change impacts on petroleum industry. Expert Syst Appl, 29(4): 817–829
https://doi.org/10.1016/j.eswa.2005.06.020
|
| 79 |
S Hulsurkar, M P Biswal, S B Sinha (1997). Fuzzy programming approach to multi-objective stochastic linear programming problems. Fuzzy Sets Syst, 88(2): 173–181
https://doi.org/10.1016/S0165-0114(96)00056-5
|
| 80 |
H Huo, Z P Wei (2008). Selection of suppliers under multi-product purchase based on fuzzy multi-objective integer program model. In: Proceeding of the International Conference on Logistics Engineering and Supply Chain. Changsha, China, August 20–22, 40–46
|
| 81 |
J Hwang, M R Singh (1998). Optimal production policies for multi-stage systems with setup costs and uncertain capacities. Manage Sci, 44(9): 1279–1294
https://doi.org/10.1287/mnsc.44.9.1279
|
| 82 |
M Inuiguchi, H Ichihashi, H Tanaka (1990). Fuzzy programming: a survey of recent developments. In: R Slowinski, J Teghem, eds. Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty. Dordrecht: Kluwer Academic Publishers, 45–70
|
| 83 |
M Inuiguchi, J Ramík (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst, 111(1): 3–28
https://doi.org/10.1016/S0165-0114(98)00449-7
|
| 84 |
M Inuiguchi, M Sakawa (1998). Robust optimization under softness in a fuzzy linear programming problem. Int J Approx Reason, 18(1–2): 21–34
https://doi.org/10.1016/S0888-613X(97)10002-0
|
| 85 |
M Inuiguchi, M Sakawa, Y Kume (1994). The usefulness of possibilistic programming in production planning problems. Int J Prod Econ, 33(1–3): 45–52
https://doi.org/10.1016/0925-5273(94)90117-1
|
| 86 |
K D Jamison, W A Lodwick (2001). Fuzzy linear programming using a penalty method. Fuzzy Sets Syst, 119(1): 97–110
https://doi.org/10.1016/S0165-0114(99)00082-2
|
| 87 |
C Jansson (1988). A self-validating method for solving linear programming problems with interval input data. Computing, 6(Supplementum): 33–45
|
| 88 |
C Jiang, X Han, G R Liu, G P Liu (2008). A nonlinear interval number programming method for uncertain optimization problems. Eur J Oper Res, 188(1): 1–13
https://doi.org/10.1016/j.ejor.2007.03.031
|
| 89 |
P Kall, J Meyer (2005). Stochastic Linear Programming: Models, Theory, and Computation. New York: Springer, 65–68
|
| 90 |
S S Kara, S Onut (2010). A two-stage stochastic and robust programming approach to strategic planning of a reverse supply network: the case of paper recycling. Expert Syst Appl, 37(9): 6129–6137
https://doi.org/10.1016/j.eswa.2010.02.116
|
| 91 |
S Karmakar, P P Mujumdar (2007). A two-phase grey fuzzy optimization approach for water quality management of a river system. Adv Water Resour, 30(5): 1218–1235
https://doi.org/10.1016/j.advwatres.2006.11.001
|
| 92 |
E E Karsak, O Kuzgunkaya (2002). A fuzzy multiple objective programming approach for the selection of a flexible manufacturing system. Int J Prod Econ, 79(2): 101–111
https://doi.org/10.1016/S0925-5273(00)00157-2
|
| 93 |
R Karuppiah, M Martin, I E Grossmann (2010). A simple heuristic for reducing the number of scenarios in two-stage stochastic programming. Comput Chem Eng, 34(8): 1246–1255
https://doi.org/10.1016/j.compchemeng.2009.10.009
|
| 94 |
M Kataria, K Elofsson, B Hasler (2010). Distributional assumptions in chance-constrained programming models of stochastic water pollution. Environ Model Assess, 15(4): 273–281
https://doi.org/10.1007/s10666-009-9205-7
|
| 95 |
A I Kibzun, I V Nikulin (2001). A linear two-stage stochastic programming problem with quantile criterion: its discrete approximation. Autom Remote Control, 62(8): 1339–1348
https://doi.org/10.1023/A:1010265914603
|
| 96 |
A S Ko, N B Chang (2008). Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model. J Environ Manage, 88(1): 11–27
https://doi.org/10.1016/j.jenvman.2007.01.021
|
| 97 |
D Kuhn, P Panos, R Berc (2008). Bound-based decision rules in multistage stochastic programming. Kybernetika, 44(2): 134–150
|
| 98 |
M Kumral (2003). Application of chance-constrained programming based on multi-objective simulated annealing to solve a mineral blending problem. Eng Optim, 35(6): 661–673
https://doi.org/10.1080/03052150310001614837
|
| 99 |
R Lenton, M Muller (2009). Conclusions: lessons learned and final reflections. In: R Lenton, M Muller, eds. Integrated Water Resource Management in Practiceebetter Water Management for Development. London: Earthscan, 205–219
|
| 100 |
Y Leung (1988). Spatial Analysis and Planning under Imprecision. Amsterdam: North-Holland, 56–60
|
| 101 |
S Y Li, C F Hu (2008). An interactive satisfying method based on alternative tolerance for multiple objective optimization with fuzzy parameters. IEEE Trans Fuzzy Syst, 16(5): 1151–1160
https://doi.org/10.1109/TFUZZ.2008.924196
|
| 102 |
Y P Li, G H Huang (2009). Fuzzy-stochastic-based violation analysis method for planning water resources management systems with uncertain information. Inf Sci, 179(24): 4261–4276
https://doi.org/10.1016/j.ins.2009.09.001
|
| 103 |
Y P Li, G H Huang, A Veawab, X H Nie, L Liu (2006). Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management. J Air Waste Manag Assoc, 56(8): 1070–1082
https://doi.org/10.1080/10473289.2006.10464536
|
| 104 |
B D Liu (1998). Minimax chance constrained programming models for fuzzy decision systems. Inf Sci, 112(1–4): 25–38
https://doi.org/10.1016/S0020-0255(98)10015-4
|
| 105 |
C Z Liu, Y Y Fan, F Ordóñez (2009). A two-stage stochastic programming model for transportation network protection. Comput Oper Res, 36(5): 1582–1590
https://doi.org/10.1016/j.cor.2008.03.001
|
| 106 |
L Liu, G H Huang, Y Liu, G A Fuller, G M Zeng (2003). A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Eng Optim, 35(2): 177–199
https://doi.org/10.1080/0305215031000097068
|
| 107 |
X W Liu, J Sun (2004). A new decomposition technique in solving multistage stochastic linear programs by infeasible interior point methods. J Glob Optim, 28(2): 197–215
https://doi.org/10.1023/B:JOGO.0000015311.63755.01
|
| 108 |
Y K Liu, X D Dai (2007). Minimum-risk criteria in two-stage fuzzy random programming. In: Proceeding of the IEEE International Conference on Fuzzy Systems. London, England, July 23–26, vols 1–4, 1007–1011
|
| 109 |
Z F Liu, G H Huang (2009). Dual-interval two-stage optimization for flood management and risk analyses. Water Resour Manage, 23(11): 2141–2162
https://doi.org/10.1007/s11269-008-9375-0
|
| 110 |
Z F Liu, G H Huang, N Li (2008a). A dynamic optimization approach for power generation planning under uncertainty. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(14–15): 1413–1431
https://doi.org/10.1080/15567030801929217
|
| 111 |
D P Loucks, J R Stedinger, D A Haith (1981). Water Resources Systems Planning and Analysis. Englewood Cliffs: Prentice Hall, 186–193
|
| 112 |
F V Louveaux (1980). A solution method for multistage stochastic programs with recourse with application to an energy investment problem. Oper Res, 28(4): 889–902
https://doi.org/10.1287/opre.28.4.889
|
| 113 |
H W Lu, G H Huang, G M Zeng, I Maqsood, L He (2008). An inexact two-stage fuzzy-stochastic programming model for water resources management. Water Resour Manage, 22(8): 991–1016
https://doi.org/10.1007/s11269-007-9206-8
|
| 114 |
M K Luhandjula (1996). Fuzziness and randomness in an optimization framework. Fuzzy Sets Syst, 77(3): 291–297
https://doi.org/10.1016/0165-0114(95)00043-7
|
| 115 |
M K Luhandjula, M M Gupta (1996). On fuzzy stochastic optimization. Fuzzy Sets Syst, 81(1): 47–55
https://doi.org/10.1016/0165-0114(95)00240-5
|
| 116 |
B Luo, D C Zhou (2009). Planning hydroelectric resources with recourse-based multistage interval-stochastic programming. Stochastic Environ Res Risk Assess, 23(1): 65–73
https://doi.org/10.1007/s00477-007-0196-0
|
| 117 |
I J Lustig, J M Mulvey, T J Carpenter (1991). Formulation two-stage stochastic programs for interior point methods. Oper Res, 39(5): 757–770
https://doi.org/10.1287/opre.39.5.757
|
| 118 |
I Maqsood, G H Huang, Y F Huang, B Chen (2005). ITOM: an interval-parameter two-stage optimization model for stochastic planning of water resources systems. Stochastic Environ Res Risk Assess, 19(2): 125–133
https://doi.org/10.1007/s00477-004-0220-6
|
| 119 |
I Maqsood, G H Huang, G M Zeng (2004). An inexact two-stage mixed integer linear programming model for waste management under uncertainty. Civ Eng Environ Syst, 21(3): 187–206
https://doi.org/10.1080/10286600410001730698
|
| 120 |
M Matloka (1992). Some generalization of inexact linear programming. Optimization, 23(1): 1–6
https://doi.org/10.1080/02331939208843740
|
| 121 |
E A Medova (1998). Chance-constrained stochastic programming for integrated services network management. Ann Oper Res, 81(10): 213–230
https://doi.org/10.1023/A:1018901022726
|
| 122 |
S Mehrotra, M G Ozevin (2007). Decomposition-based interior point methods for two-stage stochastic semidefinite programming. SIAM J Optim, 18(1): 206–222
https://doi.org/10.1137/050622067
|
| 123 |
B L Miller, H M Wagner (1965). Chance constrained programming with joint constraints. Oper Res, 13(6): 930–945
https://doi.org/10.1287/opre.13.6.930
|
| 124 |
W Mohammed (2000). Chance constrained fuzzy goal programming with right-hand side uniform random variable coefficients. Fuzzy Sets Syst, 109(1): 107–110
https://doi.org/10.1016/S0165-0114(98)00151-1
|
| 125 |
R E Moore (1979). Method and Application of Interval Analysis. Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 92–95
|
| 126 |
J Mula, R Poler, J P Garcia (2006). MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst, 157(1): 74–97
https://doi.org/10.1016/j.fss.2005.05.045
|
| 127 |
J M Mulvey, R J Vanderbei, S A Zenios (1995). Robust optimization of large-scale systems. Oper Res, 43(2): 264–281
https://doi.org/10.1287/opre.43.2.264
|
| 128 |
L Ntaimo (2010). Disjunctive decomposition for two-stage stochastic mixed-binary programs with random recourse. Oper Res, 58(1): 229–243
https://doi.org/10.1287/opre.1090.0693
|
| 129 |
K N Otto, A D Lewis, E K Antonsson (1993). Approximating α-cuts with the vertex method. Fuzzy Sets Syst, 55(1): 43–50
https://doi.org/10.1016/0165-0114(93)90300-7
|
| 130 |
J Penuel, J C Smith, Y Yuan (2010). An integer decomposition algorithm for solving a two-stage facility location problem with second-stage activation costs. Naval Research Logistics, 57(5): 391–402
|
| 131 |
T R Rakes, G R Reeves (1985). Selecting tolerances in chance-constrained programming —A multiple objective linear-programming approach. Oper Res Lett, 4(2): 65–69
https://doi.org/10.1016/0167-6377(85)90034-3
|
| 132 |
J Razmi, M J Songhori, M H Khakbaz (2009). An integrated fuzzy group decision making/fuzzy linear programming (FGDMLP) framework for supplier evaluation and order allocation. Int J Adv Manuf Technol, 43(5–6): 590–607
https://doi.org/10.1007/s00170-008-1719-7
|
| 133 |
M J Reddy, S Adarsh (2010). Chance constrained optimal design of composite channels using meta-heuristic techniques. Water Resour Manage, 24(10): 2221–2235
https://doi.org/10.1007/s11269-009-9548-5
|
| 134 |
D E Rosenberg, J R Lund (2009). Modeling integrated decision for a municipal water system with recourse and uncertainties: Amman, Jordan. Water Resour Manage, 23(1): 85–115
https://doi.org/10.1007/s11269-008-9266-4
|
| 135 |
A Ruszczyński (1993). Parallel decomposition of multistage stochastic programming problems. Math Program, 58(1–3): 201–228
https://doi.org/10.1007/BF01581267
|
| 136 |
M Saadatpour, A Afshar (2007). Waste load allocation modeling with fuzzy goals; simulation-optimization approach. Water Resour Manage, 21(7): 1207–1224
https://doi.org/10.1007/s11269-006-9077-4
|
| 137 |
M Sadegh, N Mahjouri, R Kerachian (2010). Optimal inter-basin water allocation using crisp and fuzzy Shapley games. Water Resour Manage, 24(10): 2291–2310
https://doi.org/10.1007/s11269-009-9552-9
|
| 138 |
N Sae-Lim (1999). Long-Term Planning of a Solid Waste Management System under Uncertainty—An Inexact Optimization Approach. MASc Thesis, University of Regina, Regina, Saskatchewan, Canada
|
| 139 |
N Safaei, M Saidi-Mehrabad, R Tavakkoli-Moghaddam, F Sassani (2008). A fuzzy programming approach for a cell formation problem with dynamic and uncertain conditions. Fuzzy Sets Syst, 159(2): 215–236
https://doi.org/10.1016/j.fss.2007.06.014
|
| 140 |
M Sakawa, H Katagiri (2010). Interactive fuzzy programming based on fractile criterion optimization model for two-level stochastic linear programming problems. Cybern Syst, 41(7): 508–521
https://doi.org/10.1080/01969722.2010.511547
|
| 141 |
M Sakawa, K Kato (2002). An interactive fuzzy satisficing method for general multiobjective 0–1 programming problems through genetic algorithms with double strings based on a reference solution. Fuzzy Sets Syst, 125(3): 289–300
https://doi.org/10.1016/S0165-0114(01)00029-X
|
| 142 |
M Sakawa, H Yano (1994). A fuzzy dual decomposition method for large-scale multiobjective nonlinear-programming problems. Fuzzy Sets Syst, 67(1): 19–27
https://doi.org/10.1016/0165-0114(94)90205-4
|
| 143 |
C S Sawyer, Y F Lin (1998). Mixed-integer chance-constrained models for ground-water remediation. J Water Resour Plan Manage, 124(5): 285–294
https://doi.org/10.1061/(ASCE)0733-9496(1998)124:5(285)
|
| 144 |
R Schultz, L Stougie, M H van der Vlerk (1996). Two-stage stochastic linear programming: a survey. Stat Neerl, 50(3): 404–416
https://doi.org/10.1111/j.1467-9574.1996.tb01506.x
|
| 145 |
G Schweickardt, V Miranda (2009). A two-stage planning and control model toward economically adapted power distribution systems using analytical hierarchy processes and fuzzy optimization. Int J Electr Power Energy Syst, 31(6): 277–284
https://doi.org/10.1016/j.ijepes.2009.03.003
|
| 146 |
A Sengupta, T K Pal, D Chakraborty (2001). Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets Syst, 119(1): 129–138
https://doi.org/10.1016/S0165-0114(98)00407-2
|
| 147 |
A Shapiro, D Dentcheva, A Ruszczyński (2009). Lectures on Stochastic Programming: Modeling and Theory. MPS-SIAM Series on Optimization, the Society for Industrial and Applied Mathematics (SIAM) and the Mathematical Programming Society
|
| 148 |
A Shapiro, A Philpott (2010). A tutorial on Stochastic Programming.
|
| 149 |
J S Shih, H C Frey (1995). Coal blending optimization under uncertainty. Eur J Oper Res, 83(3): 452–465
https://doi.org/10.1016/0377-2217(94)00243-6
|
| 150 |
R Słowiński (1986). A multicriteria fuzzy linear programming method for water supply system development planning. Fuzzy Sets Syst, 19(3): 217–237
https://doi.org/10.1016/0165-0114(86)90052-7
|
| 151 |
W B Snellen, A Schrevel (2004). IWRM: For Sustainable Use of Water 50 Years of International Experience with the Concept of Integrated Water Management. Ministry of Agriculture, Nature, and Food Quality, Wageningen, the Netherlands
|
| 152 |
M M Sobral, K W Hipel, G J Fargugar (1981). A multicriteria model for solid waste management. J Environ Manage, 12: 97–110
|
| 153 |
C Stanciulescu, P Fortemps, M Installe, V Wertz (2003). Multiobjective fuzzy linear programming problems with fuzzy decision variables. Eur J Oper Res, 149(3): 654–675
https://doi.org/10.1016/S0377-2217(02)00449-6
|
| 154 |
T Sugimoto, M Fukushima, T Ibaraki (1995). A parallel relaxation method for quadratic programming problems with interval constraints. J Comput Appl Math, 60(1–2): 219–236
https://doi.org/10.1016/0377-0427(94)00093-G
|
| 155 |
L Sukyirun (2004). Long-Term Planning of Water Quality Management in the Bang Pakong River Basin under Uncertainty. MASc Thesis, University of Regina, Regina, Saskatchewan, Canada
|
| 156 |
G J Sun, Y K Liu, Y F Lan (2010). Optimizing material procurement planning problem by two-stage fuzzy programming. Comput Ind Eng, 58(1): 97–107
https://doi.org/10.1016/j.cie.2009.09.001
|
| 157 |
K Takeuchi (1986). Chance-constrained model for real-time reservoir operation using drought duration curve. Water Resour Res, 22(4): 551–558
https://doi.org/10.1029/WR022i004p00551
|
| 158 |
S Takriti, S Ahmed (2004). On robust optimization of two-stage systems. Math Program, 99(1): 109–126
https://doi.org/10.1007/s10107-003-0373-y
|
| 159 |
A K Takyi, B J Lence (1999). Surface water quality management using a multiple-realization chance constraint method. Water Resour Res, 35(5): 1657–1670
https://doi.org/10.1029/98WR02771
|
| 160 |
Q Tan, G H Huang, Y P Cai (2010a). Identification of optimal plans for municipal solid waste management in an environment of fuzziness and two-layer randomness. Stochastic Environ Res Risk Assess, 24(1): 147–164
https://doi.org/10.1007/s00477-009-0307-1
|
| 161 |
Q Tan, G H Huang, Y P Cai (2010b). Radial-interval linear programming for environmental management under varied protection levels. J Air Waste Manag Assoc, 60(9): 1078–1093
https://doi.org/10.3155/1047-3289.60.9.1078
|
| 162 |
Q Tan, G H Huang, Y P Cai (2010c). A superiority-inferiority-based inexact fuzzy stochastic programming approach for solid waste management under uncertainty. Environ Model Assess, 15(5): 381–396
https://doi.org/10.1007/s10666-009-9214-6
|
| 163 |
Q Tan, G H Huang, Y P Cai (2010d). Waste management with recourse: an inexact dynamic programming model containing fuzzy-boundary intervals in objectives and constraints. J Environ Manage, 91(9): 1898–1913
https://doi.org/10.1016/j.jenvman.2010.04.005
|
| 164 |
Q Tan, G H Huang, Y P Cai (2011a). Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty. Agric Water Manage, 98(10): 1595–1606
https://doi.org/10.1016/j.agwat.2011.05.013
|
| 165 |
Q Tan, G H Huang, Y P Cai (2012). Robust planning of environmental management systems with adjustable conservativeness under compound uncertainty. J Environ Eng, 138(2): 208–222
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000469
|
| 166 |
Q Tan, G H Huang, Y P Cai (2013). Multi-source multi-sector sustainable water supply under multiple uncertainties: an inexact fuzzy-stochastic quadratic programming approach. Water Resour Manage, 27(2): 451–473
https://doi.org/10.1007/s11269-012-0196-9
|
| 167 |
Q Tan, G H Huang, C Z Wu, Y P Cai (2011b). IF-EM: an interval-parameter fuzzy linear programming model for environment-oriented evacuation planning under uncertainty. Journal of Advanced Transportation, 45(4): 286–303
https://doi.org/10.1002/atr.137
|
| 168 |
Q Tan, G H Huang, C Z Wu, Y P Cai, X P Yan (2009). Development of an inexact fuzzy robust programming model for integrated evacuation management under uncertainty. J Urban Plann Dev, 135(1): 39–49
https://doi.org/10.1061/(ASCE)0733-9488(2009)135:1(39)
|
| 169 |
H Tanaka, T Okuda, K Asai (1973). On fuzzy-mathematical programming. Journal of Cybernetics, 3(4): 37–46
https://doi.org/10.1080/01969727308545912
|
| 170 |
R S V Teegavarapu (2010). Modeling climate change uncertainties in water resources management models. Environ Model Softw, 25(10): 1261–1265
https://doi.org/10.1016/j.envsoft.2010.03.025
|
| 171 |
T Tometzki, S Engell (2009). Hybrid evolutionary optimization of two-stage stochastic integer programming problems: an empirical investigation. Evol Comput, 17(4): 511–526
https://doi.org/10.1162/evco.2009.17.4.17404
|
| 172 |
S C Tong (1994). Interval number and fuzzy number linear programming. Fuzzy Sets Syst, 66(3): 301–306
https://doi.org/10.1016/0165-0114(94)90097-3
|
| 173 |
S A Torabi, E Hassini (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst, 159(2): 193–214
https://doi.org/10.1016/j.fss.2007.08.010
|
| 174 |
S Trukhanov, L Ntaimo, A Schaefer (2010). Adaptive multicut aggregation for two-stage stochastic linear programs with recourse. European Journal of Operational Research, 206(2): 395–406
|
| 175 |
B Urli, R Nadeau (1992). An interactive method to multiobjective linear programming problems with interval coefficients. INFOR: Information Systems and Operational Research, 30(2): 127–137
|
| 176 |
H Vladimirou, S A Zenios (1997). Stochastic linear programs with restricted recourse. Eur J Oper Res, 101(1): 177–192
https://doi.org/10.1016/0377-2217(95)00370-3
|
| 177 |
S M Wang, J Watada, W Pedrycz (2009). Value-at-risk-based two-stage fuzzy facility location problems. IEEE Transactions on Industrial Informatics, 5(4): 465–482
https://doi.org/10.1109/TII.2009.2022542
|
| 178 |
X W Wang, Y P Cai, J J Chen, C Dai (2013). A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management — A case study of Beijing. Energy, 63(15): 334–344
https://doi.org/10.1016/j.energy.2013.10.054
|
| 179 |
T Watanabe, H Ellis (1994). A joint chance-constrained programming model with row dependence. Eur J Oper Res, 77(2): 325–343
https://doi.org/10.1016/0377-2217(94)90376-X
|
| 180 |
A Weintraub, J Vera (1991). A cutting plane approach for chance constrained linear programs. Oper Res, 39(5): 776–785
https://doi.org/10.1287/opre.39.5.776
|
| 181 |
B Werners (1987). Interactive multiple objective programming subject to flexible constraints. Eur J Oper Res, 31(3): 342–349
https://doi.org/10.1016/0377-2217(87)90043-9
|
| 182 |
R J B Wets (1996). Challenges in stochastic programming. Math Program, 75(2): 115–135
https://doi.org/10.1007/BF02592149
|
| 183 |
S M Wu, G H Huang, H C Guo (1997). An interactive inexact-fuzzy approach for multiobjective planning of water resource systems. Water Sci Technol, 36(5): 235–242
https://doi.org/10.1016/S0273-1223(97)00479-4
|
| 184 |
X Y Wu, G H Huang, L Liu, J B Li (2006). An interval nonlinear program for the planning of waste management systems with economies-of-scale effects — A case study for the region of Hamilton, Ontario, Canada. Eur J Oper Res, 171(2): 349–372
https://doi.org/10.1016/j.ejor.2005.01.038
|
| 185 |
B Xu, W G Fang, R F Shi, J Yu, L Liu (2009a). Three-objective fuzzy chance-constrained programming model for multiproject and multi-item investment combination. Inf Sci, 179(5): 623–641
https://doi.org/10.1016/j.ins.2008.10.031
|
| 186 |
Y Xu, G H Huang, X S Qin (2009b). Inexact two-stage stochastic robust optimization model for water resources management under uncertainty. Environmental Engineering Science, 26(12): 1765–1776
|
| 187 |
J S Yao, K Wu (2000). Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets Syst, 116(2): 275–288
https://doi.org/10.1016/S0165-0114(98)00122-5
|
| 188 |
S C Yeh (1996). Grey Programming and Its Applications to Water Resources Management. Dissertation for PhD degree. New York: Cornell University
|
| 189 |
L A Zadeh (1965). Fuzzy sets. Inf Control, 8(3): 338–353
https://doi.org/10.1016/S0019-9958(65)90241-X
|
| 190 |
L A Zadeh (1975). The concept of a linguistic variable and its application to approximate reasoning - I. Inf Sci, 8(3): 199–249
https://doi.org/10.1016/0020-0255(75)90036-5
|
| 191 |
M K Zanjani, M Nourelfath, D Ait-Kadi (2010). A multi-stage stochastic programming approach for production planning with uncertainty in the quality of raw materials and demand. Int J Prod Res, 48(16): 4701–4723
https://doi.org/10.1080/00207540903055727
|
| 192 |
J D Zhang, G Rong (2010). Fuzzy possibilistic modeling and sensitivity analysis for optimal fuel gas scheduling in refinery. Eng Appl Artif Intell, 23(3): 371–385
https://doi.org/10.1016/j.engappai.2010.01.023
|
| 193 |
H J Zimmermann (1985). Applications of fuzzy sets theory to mathematical programming. Inf Sci, 36(1–2): 29–58
https://doi.org/10.1016/0020-0255(85)90025-8
|