Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (1) : 51-64    https://doi.org/10.1007/s11707-014-0449-4
REVIEW ARTICLE
A review of inexact optimization modeling and its application to integrated water resources management
Ran WANG1, Yin LI2, Qian TAN3,4()
1. State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
2. Research Institute of Highway Ministry of Transport, Beijing 100088, China
3. MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China
4. Institute for Energy, Environment and Sustainable Communities, University of Regina, Saskatchewan S4S 7H9, Canada
 Download: PDF(218 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Water is crucial in supporting people’s daily life and the continual quest for socio-economic development. It is also a fundamental resource for ecosystems. Due to the associated complexities and uncertainties, as well as intensive competition over limited water resources between human beings and ecosystems, decision makers are facing increased pressure to respond effectively to various water-related issues and conflicts from an integrated point of view. This quandary requires a focused effort to resolve a wide range of issues related to water resources, as well as the associated economic and environmental implications. Effective systems analysis approaches under uncertainty that successfully address interactions, complexities, uncertainties, and changing conditions associated with water resources, human activities, and ecological conditions are desired, which requires a systematic investigation of the previous studies in relevant areas. Systems analysis and optimization modeling for integrated water resources management under uncertainty is thus comprehensively reviewed in this paper. A number of related methodologies and applications related to stochastic, fuzzy, and interval mathematical optimization modeling are examined. Then, their applications to integrated water resources management are presented. Perspectives of effective management schemes are investigated, demonstrating many demanding areas for enhanced research efforts, which include issues of data availability and reliability, concerns over uncertainty, necessity of post-modeling analysis, and the usefulness of the development of simulation techniques.

Keywords inexact optimization      stochastic      fuzzy sets      integrated water resources management      uncertainty     
Corresponding Author(s): Qian TAN   
Online First Date: 15 July 2014    Issue Date: 04 February 2015
 Cite this article:   
Ran WANG,Yin LI,Qian TAN. A review of inexact optimization modeling and its application to integrated water resources management[J]. Front. Earth Sci., 2015, 9(1): 51-64.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0449-4
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I1/51
1 M Abu-Taleb, B Mareschal (1995). Water resources planning in the Middle East: application of the PROMETHEE V multicriteria method. Eur J Oper Res, 81(3): 500–511
https://doi.org/10.1016/0377-2217(94)00007-Y
2 S Ahmed, A J King, G Parija (2003). A multi-stage stochastic integer programming approach for capacity expansion under uncertainty. J Glob Optim, 26(1): 3–24
https://doi.org/10.1023/A:1023062915106
3 T Akter, S P Simonovic (2005). Aggregation of fuzzy views of a large number of stakeholders for multi-objective flood management decision-making. J Environ Manage, 77(2): 133–143
https://doi.org/10.1016/j.jenvman.2005.02.015
4 V M Albornoz, P Benario, M E Rojas (2004). A two-stage stochastic integer programming model for a thermal power system expansion. Int Trans Oper Res, 11(3): 243–257
https://doi.org/10.1111/j.1475-3995.2004.00456.x
5 G Alefeld, J Herzberger (1983). Introductions to Interval Computations. New York: Academic Press, 67
6 F Almadizar, M Ghazanfari, Fatemi S M T Ghomi (2009). Application of chance-constrained programming for stochastic group shop scheduling problem. Int J Adv Manuf Technol, 42(3–4): 321–334
https://doi.org/10.1007/s00170-008-1594-2
7 S R Arora, R Gupta (2009). Interactive fuzzy goal programming approach for bilevel programming problem. Eur J Oper Res, 194(2): 368–376
https://doi.org/10.1016/j.ejor.2007.12.019
8 K B Aviso, R R Tan, A B Culaba, J B Cruz Jr (2010). Bi-level fuzzy optimization approach for water exchange in eco-industrial parks. Process Saf Environ Prot, 88(1): 31–40
https://doi.org/10.1016/j.psep.2009.11.003
9 C Bao, C L Fang (2007). Water resources constraint force on urbanization in water deficient regions: a case study of the Hexi Corridor, arid area of NW China. Ecol Econ, 62(3–4): 508–517
https://doi.org/10.1016/j.ecolecon.2006.07.013
10 B Bass, G H Huang, J Russo (1997). Incorporation climate change into risk assessment using grey mathematical programming. J Environ Manage, 49(1): 107–123
https://doi.org/10.1006/jema.1996.0119
11 E M L Beale (1955). On minimizing a convex function subject to linear inequalities. J R Stat Soc, B, 17(2): 173–184
12 R Bellman, L A Zadeh (1970). Decision-making in a fuzzy environment. Manage Sci, 17(4): 141–164
https://doi.org/10.1287/mnsc.17.4.B141
13 F Ben Abdelaziz, H Masri (2009). Multistage stochastic programming with fuzzy probability distribution. Fuzzy Sets Syst, 160(22): 3239–3249
https://doi.org/10.1016/j.fss.2008.10.010
14 M J Bender, S P Simonovic (2000). A fuzzy compromise approach to water resource systems planning under uncertainty. Fuzzy Sets Syst, 115(1): 35–44
https://doi.org/10.1016/S0165-0114(99)00025-1
15 P Beraldi, R Musmanno, C Triki (2000). Solving stochastic linear programs with restricted recourse using interior point methods. Comput Optim Appl, 15(3): 215–234
https://doi.org/10.1023/A:1008772217145
16 J R Birge, F Louveaux (1997). Introduction to Stochastic Programming. New York: Springer, 24
17 J R Birge, F V Louveaux (1988). A multicut algorithm for two-stage stochastic linear programs. Eur J Oper Res, 34(3): 384–392
https://doi.org/10.1016/0377-2217(88)90159-2
18 P Bosch, A Jofré, R Schultz (2007). Two-stage stochastic programs with mixed probabilities. SIAM J Optim, 18(3): 778–788
https://doi.org/10.1137/050648754
19 J J Buckley, T Feuring (2000). Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming. Fuzzy Sets Syst, 109(1): 35–53
https://doi.org/10.1016/S0165-0114(98)00022-0
20 Y P Cai, G H Huang, Q G Lin, X H Nie, Q Tan (2009c). An optimization-model-based interactive decision support system for regional energy management systems planning under uncertainty. Expert Syst Appl, 36(2): 3470–3482
https://doi.org/10.1016/j.eswa.2008.02.036
21 Y P Cai, G H Huang, H W Lu, Z F Yang, Q Tan (2009d). I-VFRP: an interval-valued fuzzy robust programming approach for municipal waste management planning under uncertainty. Eng Optim, 41(5): 399–418
https://doi.org/10.1080/03052150802488381
22 Y P Cai, G H Huang, X H Nie, Y P Li, Q Tan (2007). Municipal solid waste management under uncertainty: a mixed interval parameter fuzzy-stochastic robust programming approach. Environ Eng Sci, 24(3): 338–352
https://doi.org/10.1089/ees.2005.0140
23 Y P Cai, G H Huang, Q Tan (2009b). An inexact optimization model for regional energy systems planning in the mixed stochastic and fuzzy environment. Int J Energy Res, 33(5): 443–468
https://doi.org/10.1002/er.1483
24 Y P Cai, G H Huang, Q Tan, B Chen (2011). Identification of optimal strategies for improving eco-resilience to floods in ecologically vulnerable regions of a wetland. Ecol Modell, 222(2): 360–369
https://doi.org/10.1016/j.ecolmodel.2009.12.012
25 Y P Cai, G H Huang, Q Tan, Z F Yang (2009e). Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment. Renew Energy, 34(7): 1833–1847
https://doi.org/10.1016/j.renene.2008.11.024
26 Y P Cai, G H Huang, Z F Yang, Q G Lin, Q Tan (2009a). Community-scale renewable energy systems planning under uncertainty — An interval chance-constrained programming approach. Renew Sustain Energy Rev, 13(4): 721–735
https://doi.org/10.1016/j.rser.2008.01.008
27 Y P Cai, G H Huang, Z F Yang, W Sun, B Chen (2009f). Investigation of public’s perception towards rural sustainable development based on a two-level expert system. Expert Syst Appl, 36(5): 8910–8924
https://doi.org/10.1016/j.eswa.2008.11.032
28 Y P Cai, G H Huang, Z F Yang, Q Tan (2009g). Identification of optimal strategies for energy management systems planning under multiple uncertainties. Appl Energy, 86(4): 480–495
https://doi.org/10.1016/j.apenergy.2008.09.025
29 L Campos, J L Verdegay (1989). Linear programming problems and ranking of fuzzy numbers. Fuzzy Sets Syst, 32(1): 1–11
https://doi.org/10.1016/0165-0114(89)90084-5
30 C W Cao, X S Gu, Z Xin (2009). Chance constrained programming models for refinery short-term crude oil scheduling problem. Appl Math Model, 33(3): 1696–1707
https://doi.org/10.1016/j.apm.2008.03.022
31 N Carter, R D Kreutzwiser, R C de Loë (2005). Closing the circle: linking land use planning and water management. Land Use Policy, 22(2): 115–127
https://doi.org/10.1016/j.landusepol.2004.01.004
32 A Castelletti, F Pianosi, R Soncini-Sessa (2008). Integration, participation and optimal control in water resources planning and management. Appl Math Comput, 206(1): 21–33
https://doi.org/10.1016/j.amc.2007.09.069
33 S Chanas, D Kuchta (1996). Multiobjective programming in optimization of interval objective functions — A generalized approach. Eur J Oper Res, 94(3): 594–598
https://doi.org/10.1016/0377-2217(95)00055-0
34 N B Chang, E A Hernandez (2008). Optimal expansion strategy for a sewer system under uncertainty. Environ Model Assess, 13(1): 93–113
https://doi.org/10.1007/s10666-007-9084-8
35 N B Chang, S F Wang (1995). A grey nonlinear programming approach for planning coastal wastewater treatment and disposal systems. Water Sci Technol, 32(2): 19–29
https://doi.org/10.1016/0273-1223(95)00565-5
36 N B Chang, C G Wen, Y L Chen, Y C Yong (1996). A grey fuzzy multiobjective programming approach for the optimal planning of a reservoir watershed, Part A: theoretical development. Water Res, 30(10): 2329–2334
https://doi.org/10.1016/0043-1354(96)00124-8
37 A Charnes, W W Cooper, G H Symonds (1958). Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Manage Sci, 4(3): 235–263
https://doi.org/10.1287/mnsc.4.3.235
38 M J Chen, G H Huang (2001). A derivative algorithm for inexact quadratic program — Application to environmental decision-making under uncertainty. Eur J Oper Res, 128(3): 570–586
https://doi.org/10.1016/S0377-2217(99)00374-4
39 S H Chen, J Wu (2004). Interval optimization of dynamic response for structure with interval parameters. Comput Struc, 82(1): 1–11
https://doi.org/10.1016/j.compstruc.2003.09.001
40 W Q Chen, M Sim, J Sun, C P Teo (2010). From CVaR to uncertainty set: implications in joint chance-constrained optimization. Oper Res, 58(2): 470–485
https://doi.org/10.1287/opre.1090.0712
41 Y Chen, D Marc Kilgour, K W Hipe (2006). Multiple criteria classification with an application in water resources planning. Comput Oper Res, 33(11): 3301–3323
https://doi.org/10.1016/j.cor.2005.03.026
42 S Cheng, C W Chan, G H Huang (2003). An integrated multi-criteria decision analysis and inexact mixed integer linear programming approach for solid waste management. Eng Appl Artif Intell, 16(5–6): 543–554
https://doi.org/10.1016/S0952-1976(03)00069-1
43 R K Cheung, C Y Chen (1998). A two-stage stochastic network model and solution methods for the dynamic empty container allocation problem. Transport Sci, 32(2): 142–162
https://doi.org/10.1287/trsc.32.2.142
44 G F Chi (1997). Integrated Planning of a Solid Waste Management System in the City of Regina. MASc Thesis, University of Regina, Regina, Saskatchewan, Canada, 23, 25, and 31
45 G M Cho (2005). Log-barrier method for two-stage quadratic stochastic programming. Appl Math Comput, 164(1): 45–69
https://doi.org/10.1016/j.amc.2004.04.095
46 C Dai, X H Cai, Y P Cai, Q Huo, Y Lv, G H Huang (2014). An interval-parameter mean-CVaR two-stage stochastic programming approach for waste management under uncertainty. Stochastic Environ Res Risk Assess, 28(2): 167–187
https://doi.org/10.1007/s00477-013-0738-6
47 K Darby-Downman, S Barker, E Audsley, D Parsons (2002). A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture. J Oper Res Soc, 51(1): 83–89
48 E Davila, N B Chang (2005). Sustainable pattern analysis of a publicly owned recycling recovery facility in a fast-growing urban setting under uncertainty. J Environ Manage, 75(4): 337–351
https://doi.org/10.1016/j.jenvman.2004.11.016
49 E Davila, N B Chang, S Diwakaruni (2005). Landfill space consumption dynamics in the Lower Rio Grande Valley by grey integer programming-based games. J Environ Manage, 75(4): 353–365
https://doi.org/10.1016/j.jenvman.2004.11.015
50 C Dong, G H Huang, Y P Cai, Y Liu (2012). An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city. Energy, 37(1): 673–688
https://doi.org/10.1016/j.energy.2011.10.030
51 C Dong, G H Huang, Y P Cai, Y Liu (2013). Robust planning of energy management systems with environmental and constraint-conservative considerations under multiple uncertainties. Energy Convers Manage, 65: 471–486
https://doi.org/10.1016/j.enconman.2012.09.001
52 X P Du, A Sudjianto, B Q Huang (2005). Reliability-based design with the mixture of random and interval variables. J Mech Des, 127(6): 1068–1076
https://doi.org/10.1115/1.1992510
53 D Dubois, H Prade (1988). Possibility Theory: An Approach to Computerized Processing of Uncertainty. New York: Plenum Press, 102
54 D Dubois, H Prade, R Sabbadin (2001). Decision-theoretic foundations of qualitative possibility theory. Eur J Oper Res, 128(3): 459–478
https://doi.org/10.1016/S0377-2217(99)00473-7
55 N C P Edirisinghe, W T Ziemba (1994). Bounds for two-stage stochastic programs with fixed recourse. Math Oper Res, 19(2): 292–313
https://doi.org/10.1287/moor.19.2.292
56 J H Ellis (1991). Stochastic programs for identifying critical structural collapse mechanisms. Appl Math Model, 15(7): 367–373
https://doi.org/10.1016/0307-904X(91)90062-T
57 J H Ellis, E A McBean, G J Farquhar (1985). Chance-constrained/stochastic linear programming model for acid rain abatement-I. Complete and noncolinearity. Atmos Environ, 19(6): 925–937
https://doi.org/10.1016/0004-6981(85)90238-0
58 J H Ellis, E A McBean, G J Farquhar (1986). Chance-constrained stochastic linear programming model for acid rain abatement-II. Limited colinearity. Atmos Environ, 20(3): 501–511
https://doi.org/10.1016/0004-6981(86)90090-9
59 P Fortemps, M Roubens (1996). Ranking and defuzzification methods based on area compensation. Fuzzy Sets Syst, 82(3): 319–330
https://doi.org/10.1016/0165-0114(95)00273-1
60 M Fortin, E A McBean (1983). A management model for acid rain abatement. Atmos Environ, 17(11): 2331–2336
https://doi.org/10.1016/0004-6981(83)90232-9
61 A Ganji, D Khalili, M Karamouz, K Ponnambalam, M Javan (2008). A fuzzy stochastic dynamic nash game analysis of policies for managing water allocation in a reservoir system. Water Resour Manage, 22(1): 51–66
https://doi.org/10.1007/s11269-006-9143-y
62 J M Guldmann (1986). Interactions between weather stochasticity and the locations of pollution sources and receptors in air quality planning: a chance-constrained approach. Geogr Anal, 18(3): 198–214
https://doi.org/10.1111/j.1538-4632.1986.tb00093.x
63 P Guo, G H Huang, L He, B W Sun (2008). ITSSIP: interval-parameter two-stage stochastic semi-infinite programming for environmental management under uncertainty. Environ Model Softw, 23(12): 1422–1437
https://doi.org/10.1016/j.envsoft.2008.04.009
64 P Guo, G H Huang, Y P Li (2010). An inexact fuzzy-chance-constrained two-stage mixed-integer linear programming approach for flood diversion planning under multiple uncertainties. Adv Water Resour, 33(1): 81–91
https://doi.org/10.1016/j.advwatres.2009.10.009
65 C Z Gurgur, J T Luxhoj (2003). Application of chance-constrained programming to capital rationing problems with asymmetrically distributed cash flows and available budget. Eng Economist, 48(3): 241–258
https://doi.org/10.1080/00137910308965064
66 J L Higle, S Sen (1991). Stochastic decomposition: an algorithm for two-stage linear programs with recourse. Math Oper Res, 16(3): 650–669
https://doi.org/10.1287/moor.16.3.650
67 G H Huang, B W Baetz, G G Patry (1992). A grey linear programming approach for municipal solid waste management planning under uncertainty. Civ Eng Syst, 9(4): 319–335
https://doi.org/10.1080/02630259208970657
68 G H Huang, B W Baetz, G G Patry (1993). A grey fuzzy linear programming approach for municipal solid waste management planning under uncertainty. Civ Eng Syst, 10(2): 123–146
https://doi.org/10.1080/02630259308970119
69 G H Huang, B W Baetz, G G Patry (1995a). Grey fuzzy integer programming: an application to regional waste management planning under uncertainty. Socioecon Plann Sci, 29(1): 17–38
https://doi.org/10.1016/0038-0121(95)98604-T
70 G H Huang, B W Baetz, G G Patry (1995b). Grey integer programming: an application to waste management planning under uncertainty. Eur J Oper Res, 83(3): 594–620
https://doi.org/10.1016/0377-2217(94)00093-R
71 G H Huang, B W Baetz, G G Patry (1995c). Grey quadratic programming and its application to municipal waste management planning under uncertainty. Eng Optim, 23(3): 201–223
https://doi.org/10.1080/03052159508941354
72 G H Huang, B W Baetz, G G Patry (1996a). A grey hop, skip, and jump approach: generating alternatives for expansion planning of waste management facilities. Can J Civ Eng, 23(6): 1207–1219
https://doi.org/10.1139/l96-930
73 G H Huang, G F Chi, Y P Li (2005b). Long-term planning of an integrated solid waste management system under uncertainty- II. A North American case study. Environ Eng Sci, 22(6): 835–853
https://doi.org/10.1089/ees.2005.22.835
74 G H Huang, J D Linton, J S Yeomans, R Yoogalingam (2005a). Policy planning under uncertainty: efficient starting populations for simulation-optimization methods applied to municipal solid waste management. J Environ Manage, 77(1): 22–34
https://doi.org/10.1016/j.jenvman.2005.02.008
75 G H Huang, D P Loucks (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civ Eng Environ Syst, 17(2): 95–118
https://doi.org/10.1080/02630250008970277
76 G H Huang, Y Y Yin, S J Cohen, B Bass (1995d). Interval parameter modelling to generate alternatives: a software for environmental decision-making under certainty. In: C A Brebbia, eds. Computer Techniques in Environmental Studies. Southampton: Computational Mechanics Publications, 213–223
77 X X Huang (2007). Chance-constrained programming models for capital budgeting with NPV as fuzzy parameters. J Comput Appl Math, 198(1): 149–159
https://doi.org/10.1016/j.cam.2005.11.026
78 Y F Huang, G H Huang, Z Y Hu, I Maqsood, A Chakma (2005c). Development of an expert system for tackling the public’s perception to climate-change impacts on petroleum industry. Expert Syst Appl, 29(4): 817–829
https://doi.org/10.1016/j.eswa.2005.06.020
79 S Hulsurkar, M P Biswal, S B Sinha (1997). Fuzzy programming approach to multi-objective stochastic linear programming problems. Fuzzy Sets Syst, 88(2): 173–181
https://doi.org/10.1016/S0165-0114(96)00056-5
80 H Huo, Z P Wei (2008). Selection of suppliers under multi-product purchase based on fuzzy multi-objective integer program model. In: Proceeding of the International Conference on Logistics Engineering and Supply Chain. Changsha, China, August 20–22, 40–46
81 J Hwang, M R Singh (1998). Optimal production policies for multi-stage systems with setup costs and uncertain capacities. Manage Sci, 44(9): 1279–1294
https://doi.org/10.1287/mnsc.44.9.1279
82 M Inuiguchi, H Ichihashi, H Tanaka (1990). Fuzzy programming: a survey of recent developments. In: R Slowinski, J Teghem, eds. Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty. Dordrecht: Kluwer Academic Publishers, 45–70
83 M Inuiguchi, J Ramík (2000). Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets Syst, 111(1): 3–28
https://doi.org/10.1016/S0165-0114(98)00449-7
84 M Inuiguchi, M Sakawa (1998). Robust optimization under softness in a fuzzy linear programming problem. Int J Approx Reason, 18(1–2): 21–34
https://doi.org/10.1016/S0888-613X(97)10002-0
85 M Inuiguchi, M Sakawa, Y Kume (1994). The usefulness of possibilistic programming in production planning problems. Int J Prod Econ, 33(1–3): 45–52
https://doi.org/10.1016/0925-5273(94)90117-1
86 K D Jamison, W A Lodwick (2001). Fuzzy linear programming using a penalty method. Fuzzy Sets Syst, 119(1): 97–110
https://doi.org/10.1016/S0165-0114(99)00082-2
87 C Jansson (1988). A self-validating method for solving linear programming problems with interval input data. Computing, 6(Supplementum): 33–45
88 C Jiang, X Han, G R Liu, G P Liu (2008). A nonlinear interval number programming method for uncertain optimization problems. Eur J Oper Res, 188(1): 1–13
https://doi.org/10.1016/j.ejor.2007.03.031
89 P Kall, J Meyer (2005). Stochastic Linear Programming: Models, Theory, and Computation. New York: Springer, 65–68
90 S S Kara, S Onut (2010). A two-stage stochastic and robust programming approach to strategic planning of a reverse supply network: the case of paper recycling. Expert Syst Appl, 37(9): 6129–6137
https://doi.org/10.1016/j.eswa.2010.02.116
91 S Karmakar, P P Mujumdar (2007). A two-phase grey fuzzy optimization approach for water quality management of a river system. Adv Water Resour, 30(5): 1218–1235
https://doi.org/10.1016/j.advwatres.2006.11.001
92 E E Karsak, O Kuzgunkaya (2002). A fuzzy multiple objective programming approach for the selection of a flexible manufacturing system. Int J Prod Econ, 79(2): 101–111
https://doi.org/10.1016/S0925-5273(00)00157-2
93 R Karuppiah, M Martin, I E Grossmann (2010). A simple heuristic for reducing the number of scenarios in two-stage stochastic programming. Comput Chem Eng, 34(8): 1246–1255
https://doi.org/10.1016/j.compchemeng.2009.10.009
94 M Kataria, K Elofsson, B Hasler (2010). Distributional assumptions in chance-constrained programming models of stochastic water pollution. Environ Model Assess, 15(4): 273–281
https://doi.org/10.1007/s10666-009-9205-7
95 A I Kibzun, I V Nikulin (2001). A linear two-stage stochastic programming problem with quantile criterion: its discrete approximation. Autom Remote Control, 62(8): 1339–1348
https://doi.org/10.1023/A:1010265914603
96 A S Ko, N B Chang (2008). Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model. J Environ Manage, 88(1): 11–27
https://doi.org/10.1016/j.jenvman.2007.01.021
97 D Kuhn, P Panos, R Berc (2008). Bound-based decision rules in multistage stochastic programming. Kybernetika, 44(2): 134–150
98 M Kumral (2003). Application of chance-constrained programming based on multi-objective simulated annealing to solve a mineral blending problem. Eng Optim, 35(6): 661–673
https://doi.org/10.1080/03052150310001614837
99 R Lenton, M Muller (2009). Conclusions: lessons learned and final reflections. In: R Lenton, M Muller, eds. Integrated Water Resource Management in Practiceebetter Water Management for Development. London: Earthscan, 205–219
100 Y Leung (1988). Spatial Analysis and Planning under Imprecision. Amsterdam: North-Holland, 56–60
101 S Y Li, C F Hu (2008). An interactive satisfying method based on alternative tolerance for multiple objective optimization with fuzzy parameters. IEEE Trans Fuzzy Syst, 16(5): 1151–1160
https://doi.org/10.1109/TFUZZ.2008.924196
102 Y P Li, G H Huang (2009). Fuzzy-stochastic-based violation analysis method for planning water resources management systems with uncertain information. Inf Sci, 179(24): 4261–4276
https://doi.org/10.1016/j.ins.2009.09.001
103 Y P Li, G H Huang, A Veawab, X H Nie, L Liu (2006). Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management. J Air Waste Manag Assoc, 56(8): 1070–1082
https://doi.org/10.1080/10473289.2006.10464536
104 B D Liu (1998). Minimax chance constrained programming models for fuzzy decision systems. Inf Sci, 112(1–4): 25–38
https://doi.org/10.1016/S0020-0255(98)10015-4
105 C Z Liu, Y Y Fan, F Ordóñez (2009). A two-stage stochastic programming model for transportation network protection. Comput Oper Res, 36(5): 1582–1590
https://doi.org/10.1016/j.cor.2008.03.001
106 L Liu, G H Huang, Y Liu, G A Fuller, G M Zeng (2003). A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Eng Optim, 35(2): 177–199
https://doi.org/10.1080/0305215031000097068
107 X W Liu, J Sun (2004). A new decomposition technique in solving multistage stochastic linear programs by infeasible interior point methods. J Glob Optim, 28(2): 197–215
https://doi.org/10.1023/B:JOGO.0000015311.63755.01
108 Y K Liu, X D Dai (2007). Minimum-risk criteria in two-stage fuzzy random programming. In: Proceeding of the IEEE International Conference on Fuzzy Systems. London, England, July 23–26, vols 1–4, 1007–1011
109 Z F Liu, G H Huang (2009). Dual-interval two-stage optimization for flood management and risk analyses. Water Resour Manage, 23(11): 2141–2162
https://doi.org/10.1007/s11269-008-9375-0
110 Z F Liu, G H Huang, N Li (2008a). A dynamic optimization approach for power generation planning under uncertainty. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(14–15): 1413–1431
https://doi.org/10.1080/15567030801929217
111 D P Loucks, J R Stedinger, D A Haith (1981). Water Resources Systems Planning and Analysis. Englewood Cliffs: Prentice Hall, 186–193
112 F V Louveaux (1980). A solution method for multistage stochastic programs with recourse with application to an energy investment problem. Oper Res, 28(4): 889–902
https://doi.org/10.1287/opre.28.4.889
113 H W Lu, G H Huang, G M Zeng, I Maqsood, L He (2008). An inexact two-stage fuzzy-stochastic programming model for water resources management. Water Resour Manage, 22(8): 991–1016
https://doi.org/10.1007/s11269-007-9206-8
114 M K Luhandjula (1996). Fuzziness and randomness in an optimization framework. Fuzzy Sets Syst, 77(3): 291–297
https://doi.org/10.1016/0165-0114(95)00043-7
115 M K Luhandjula, M M Gupta (1996). On fuzzy stochastic optimization. Fuzzy Sets Syst, 81(1): 47–55
https://doi.org/10.1016/0165-0114(95)00240-5
116 B Luo, D C Zhou (2009). Planning hydroelectric resources with recourse-based multistage interval-stochastic programming. Stochastic Environ Res Risk Assess, 23(1): 65–73
https://doi.org/10.1007/s00477-007-0196-0
117 I J Lustig, J M Mulvey, T J Carpenter (1991). Formulation two-stage stochastic programs for interior point methods. Oper Res, 39(5): 757–770
https://doi.org/10.1287/opre.39.5.757
118 I Maqsood, G H Huang, Y F Huang, B Chen (2005). ITOM: an interval-parameter two-stage optimization model for stochastic planning of water resources systems. Stochastic Environ Res Risk Assess, 19(2): 125–133
https://doi.org/10.1007/s00477-004-0220-6
119 I Maqsood, G H Huang, G M Zeng (2004). An inexact two-stage mixed integer linear programming model for waste management under uncertainty. Civ Eng Environ Syst, 21(3): 187–206
https://doi.org/10.1080/10286600410001730698
120 M Matloka (1992). Some generalization of inexact linear programming. Optimization, 23(1): 1–6
https://doi.org/10.1080/02331939208843740
121 E A Medova (1998). Chance-constrained stochastic programming for integrated services network management. Ann Oper Res, 81(10): 213–230
https://doi.org/10.1023/A:1018901022726
122 S Mehrotra, M G Ozevin (2007). Decomposition-based interior point methods for two-stage stochastic semidefinite programming. SIAM J Optim, 18(1): 206–222
https://doi.org/10.1137/050622067
123 B L Miller, H M Wagner (1965). Chance constrained programming with joint constraints. Oper Res, 13(6): 930–945
https://doi.org/10.1287/opre.13.6.930
124 W Mohammed (2000). Chance constrained fuzzy goal programming with right-hand side uniform random variable coefficients. Fuzzy Sets Syst, 109(1): 107–110
https://doi.org/10.1016/S0165-0114(98)00151-1
125 R E Moore (1979). Method and Application of Interval Analysis. Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 92–95
126 J Mula, R Poler, J P Garcia (2006). MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst, 157(1): 74–97
https://doi.org/10.1016/j.fss.2005.05.045
127 J M Mulvey, R J Vanderbei, S A Zenios (1995). Robust optimization of large-scale systems. Oper Res, 43(2): 264–281
https://doi.org/10.1287/opre.43.2.264
128 L Ntaimo (2010). Disjunctive decomposition for two-stage stochastic mixed-binary programs with random recourse. Oper Res, 58(1): 229–243
https://doi.org/10.1287/opre.1090.0693
129 K N Otto, A D Lewis, E K Antonsson (1993). Approximating α-cuts with the vertex method. Fuzzy Sets Syst, 55(1): 43–50
https://doi.org/10.1016/0165-0114(93)90300-7
130 J Penuel, J C Smith, Y Yuan (2010). An integer decomposition algorithm for solving a two-stage facility location problem with second-stage activation costs. Naval Research Logistics, 57(5): 391–402
131 T R Rakes, G R Reeves (1985). Selecting tolerances in chance-constrained programming —A multiple objective linear-programming approach. Oper Res Lett, 4(2): 65–69
https://doi.org/10.1016/0167-6377(85)90034-3
132 J Razmi, M J Songhori, M H Khakbaz (2009). An integrated fuzzy group decision making/fuzzy linear programming (FGDMLP) framework for supplier evaluation and order allocation. Int J Adv Manuf Technol, 43(5–6): 590–607
https://doi.org/10.1007/s00170-008-1719-7
133 M J Reddy, S Adarsh (2010). Chance constrained optimal design of composite channels using meta-heuristic techniques. Water Resour Manage, 24(10): 2221–2235
https://doi.org/10.1007/s11269-009-9548-5
134 D E Rosenberg, J R Lund (2009). Modeling integrated decision for a municipal water system with recourse and uncertainties: Amman, Jordan. Water Resour Manage, 23(1): 85–115
https://doi.org/10.1007/s11269-008-9266-4
135 A Ruszczyński (1993). Parallel decomposition of multistage stochastic programming problems. Math Program, 58(1–3): 201–228
https://doi.org/10.1007/BF01581267
136 M Saadatpour, A Afshar (2007). Waste load allocation modeling with fuzzy goals; simulation-optimization approach. Water Resour Manage, 21(7): 1207–1224
https://doi.org/10.1007/s11269-006-9077-4
137 M Sadegh, N Mahjouri, R Kerachian (2010). Optimal inter-basin water allocation using crisp and fuzzy Shapley games. Water Resour Manage, 24(10): 2291–2310
https://doi.org/10.1007/s11269-009-9552-9
138 N Sae-Lim (1999). Long-Term Planning of a Solid Waste Management System under Uncertainty—An Inexact Optimization Approach. MASc Thesis, University of Regina, Regina, Saskatchewan, Canada
139 N Safaei, M Saidi-Mehrabad, R Tavakkoli-Moghaddam, F Sassani (2008). A fuzzy programming approach for a cell formation problem with dynamic and uncertain conditions. Fuzzy Sets Syst, 159(2): 215–236
https://doi.org/10.1016/j.fss.2007.06.014
140 M Sakawa, H Katagiri (2010). Interactive fuzzy programming based on fractile criterion optimization model for two-level stochastic linear programming problems. Cybern Syst, 41(7): 508–521
https://doi.org/10.1080/01969722.2010.511547
141 M Sakawa, K Kato (2002). An interactive fuzzy satisficing method for general multiobjective 0–1 programming problems through genetic algorithms with double strings based on a reference solution. Fuzzy Sets Syst, 125(3): 289–300
https://doi.org/10.1016/S0165-0114(01)00029-X
142 M Sakawa, H Yano (1994). A fuzzy dual decomposition method for large-scale multiobjective nonlinear-programming problems. Fuzzy Sets Syst, 67(1): 19–27
https://doi.org/10.1016/0165-0114(94)90205-4
143 C S Sawyer, Y F Lin (1998). Mixed-integer chance-constrained models for ground-water remediation. J Water Resour Plan Manage, 124(5): 285–294
https://doi.org/10.1061/(ASCE)0733-9496(1998)124:5(285)
144 R Schultz, L Stougie, M H van der Vlerk (1996). Two-stage stochastic linear programming: a survey. Stat Neerl, 50(3): 404–416
https://doi.org/10.1111/j.1467-9574.1996.tb01506.x
145 G Schweickardt, V Miranda (2009). A two-stage planning and control model toward economically adapted power distribution systems using analytical hierarchy processes and fuzzy optimization. Int J Electr Power Energy Syst, 31(6): 277–284
https://doi.org/10.1016/j.ijepes.2009.03.003
146 A Sengupta, T K Pal, D Chakraborty (2001). Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets Syst, 119(1): 129–138
https://doi.org/10.1016/S0165-0114(98)00407-2
147 A Shapiro, D Dentcheva, A Ruszczyński (2009). Lectures on Stochastic Programming: Modeling and Theory. MPS-SIAM Series on Optimization, the Society for Industrial and Applied Mathematics (SIAM) and the Mathematical Programming Society
148 A Shapiro, A Philpott (2010). A tutorial on Stochastic Programming.
149 J S Shih, H C Frey (1995). Coal blending optimization under uncertainty. Eur J Oper Res, 83(3): 452–465
https://doi.org/10.1016/0377-2217(94)00243-6
150 R Słowiński (1986). A multicriteria fuzzy linear programming method for water supply system development planning. Fuzzy Sets Syst, 19(3): 217–237
https://doi.org/10.1016/0165-0114(86)90052-7
151 W B Snellen, A Schrevel (2004). IWRM: For Sustainable Use of Water 50 Years of International Experience with the Concept of Integrated Water Management. Ministry of Agriculture, Nature, and Food Quality, Wageningen, the Netherlands
152 M M Sobral, K W Hipel, G J Fargugar (1981). A multicriteria model for solid waste management. J Environ Manage, 12: 97–110
153 C Stanciulescu, P Fortemps, M Installe, V Wertz (2003). Multiobjective fuzzy linear programming problems with fuzzy decision variables. Eur J Oper Res, 149(3): 654–675
https://doi.org/10.1016/S0377-2217(02)00449-6
154 T Sugimoto, M Fukushima, T Ibaraki (1995). A parallel relaxation method for quadratic programming problems with interval constraints. J Comput Appl Math, 60(1–2): 219–236
https://doi.org/10.1016/0377-0427(94)00093-G
155 L Sukyirun (2004). Long-Term Planning of Water Quality Management in the Bang Pakong River Basin under Uncertainty. MASc Thesis, University of Regina, Regina, Saskatchewan, Canada
156 G J Sun, Y K Liu, Y F Lan (2010). Optimizing material procurement planning problem by two-stage fuzzy programming. Comput Ind Eng, 58(1): 97–107
https://doi.org/10.1016/j.cie.2009.09.001
157 K Takeuchi (1986). Chance-constrained model for real-time reservoir operation using drought duration curve. Water Resour Res, 22(4): 551–558
https://doi.org/10.1029/WR022i004p00551
158 S Takriti, S Ahmed (2004). On robust optimization of two-stage systems. Math Program, 99(1): 109–126
https://doi.org/10.1007/s10107-003-0373-y
159 A K Takyi, B J Lence (1999). Surface water quality management using a multiple-realization chance constraint method. Water Resour Res, 35(5): 1657–1670
https://doi.org/10.1029/98WR02771
160 Q Tan, G H Huang, Y P Cai (2010a). Identification of optimal plans for municipal solid waste management in an environment of fuzziness and two-layer randomness. Stochastic Environ Res Risk Assess, 24(1): 147–164
https://doi.org/10.1007/s00477-009-0307-1
161 Q Tan, G H Huang, Y P Cai (2010b). Radial-interval linear programming for environmental management under varied protection levels. J Air Waste Manag Assoc, 60(9): 1078–1093
https://doi.org/10.3155/1047-3289.60.9.1078
162 Q Tan, G H Huang, Y P Cai (2010c). A superiority-inferiority-based inexact fuzzy stochastic programming approach for solid waste management under uncertainty. Environ Model Assess, 15(5): 381–396
https://doi.org/10.1007/s10666-009-9214-6
163 Q Tan, G H Huang, Y P Cai (2010d). Waste management with recourse: an inexact dynamic programming model containing fuzzy-boundary intervals in objectives and constraints. J Environ Manage, 91(9): 1898–1913
https://doi.org/10.1016/j.jenvman.2010.04.005
164 Q Tan, G H Huang, Y P Cai (2011a). Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty. Agric Water Manage, 98(10): 1595–1606
https://doi.org/10.1016/j.agwat.2011.05.013
165 Q Tan, G H Huang, Y P Cai (2012). Robust planning of environmental management systems with adjustable conservativeness under compound uncertainty. J Environ Eng, 138(2): 208–222
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000469
166 Q Tan, G H Huang, Y P Cai (2013). Multi-source multi-sector sustainable water supply under multiple uncertainties: an inexact fuzzy-stochastic quadratic programming approach. Water Resour Manage, 27(2): 451–473
https://doi.org/10.1007/s11269-012-0196-9
167 Q Tan, G H Huang, C Z Wu, Y P Cai (2011b). IF-EM: an interval-parameter fuzzy linear programming model for environment-oriented evacuation planning under uncertainty. Journal of Advanced Transportation, 45(4): 286–303
https://doi.org/10.1002/atr.137
168 Q Tan, G H Huang, C Z Wu, Y P Cai, X P Yan (2009). Development of an inexact fuzzy robust programming model for integrated evacuation management under uncertainty. J Urban Plann Dev, 135(1): 39–49
https://doi.org/10.1061/(ASCE)0733-9488(2009)135:1(39)
169 H Tanaka, T Okuda, K Asai (1973). On fuzzy-mathematical programming. Journal of Cybernetics, 3(4): 37–46
https://doi.org/10.1080/01969727308545912
170 R S V Teegavarapu (2010). Modeling climate change uncertainties in water resources management models. Environ Model Softw, 25(10): 1261–1265
https://doi.org/10.1016/j.envsoft.2010.03.025
171 T Tometzki, S Engell (2009). Hybrid evolutionary optimization of two-stage stochastic integer programming problems: an empirical investigation. Evol Comput, 17(4): 511–526
https://doi.org/10.1162/evco.2009.17.4.17404
172 S C Tong (1994). Interval number and fuzzy number linear programming. Fuzzy Sets Syst, 66(3): 301–306
https://doi.org/10.1016/0165-0114(94)90097-3
173 S A Torabi, E Hassini (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst, 159(2): 193–214
https://doi.org/10.1016/j.fss.2007.08.010
174 S Trukhanov, L Ntaimo, A Schaefer (2010). Adaptive multicut aggregation for two-stage stochastic linear programs with recourse. European Journal of Operational Research, 206(2): 395–406
175 B Urli, R Nadeau (1992). An interactive method to multiobjective linear programming problems with interval coefficients. INFOR: Information Systems and Operational Research, 30(2): 127–137
176 H Vladimirou, S A Zenios (1997). Stochastic linear programs with restricted recourse. Eur J Oper Res, 101(1): 177–192
https://doi.org/10.1016/0377-2217(95)00370-3
177 S M Wang, J Watada, W Pedrycz (2009). Value-at-risk-based two-stage fuzzy facility location problems. IEEE Transactions on Industrial Informatics, 5(4): 465–482
https://doi.org/10.1109/TII.2009.2022542
178 X W Wang, Y P Cai, J J Chen, C Dai (2013). A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management — A case study of Beijing. Energy, 63(15): 334–344
https://doi.org/10.1016/j.energy.2013.10.054
179 T Watanabe, H Ellis (1994). A joint chance-constrained programming model with row dependence. Eur J Oper Res, 77(2): 325–343
https://doi.org/10.1016/0377-2217(94)90376-X
180 A Weintraub, J Vera (1991). A cutting plane approach for chance constrained linear programs. Oper Res, 39(5): 776–785
https://doi.org/10.1287/opre.39.5.776
181 B Werners (1987). Interactive multiple objective programming subject to flexible constraints. Eur J Oper Res, 31(3): 342–349
https://doi.org/10.1016/0377-2217(87)90043-9
182 R J B Wets (1996). Challenges in stochastic programming. Math Program, 75(2): 115–135
https://doi.org/10.1007/BF02592149
183 S M Wu, G H Huang, H C Guo (1997). An interactive inexact-fuzzy approach for multiobjective planning of water resource systems. Water Sci Technol, 36(5): 235–242
https://doi.org/10.1016/S0273-1223(97)00479-4
184 X Y Wu, G H Huang, L Liu, J B Li (2006). An interval nonlinear program for the planning of waste management systems with economies-of-scale effects — A case study for the region of Hamilton, Ontario, Canada. Eur J Oper Res, 171(2): 349–372
https://doi.org/10.1016/j.ejor.2005.01.038
185 B Xu, W G Fang, R F Shi, J Yu, L Liu (2009a). Three-objective fuzzy chance-constrained programming model for multiproject and multi-item investment combination. Inf Sci, 179(5): 623–641
https://doi.org/10.1016/j.ins.2008.10.031
186 Y Xu, G H Huang, X S Qin (2009b). Inexact two-stage stochastic robust optimization model for water resources management under uncertainty. Environmental Engineering Science, 26(12): 1765–1776
187 J S Yao, K Wu (2000). Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets Syst, 116(2): 275–288
https://doi.org/10.1016/S0165-0114(98)00122-5
188 S C Yeh (1996). Grey Programming and Its Applications to Water Resources Management. Dissertation for PhD degree. New York: Cornell University
189 L A Zadeh (1965). Fuzzy sets. Inf Control, 8(3): 338–353
https://doi.org/10.1016/S0019-9958(65)90241-X
190 L A Zadeh (1975). The concept of a linguistic variable and its application to approximate reasoning - I. Inf Sci, 8(3): 199–249
https://doi.org/10.1016/0020-0255(75)90036-5
191 M K Zanjani, M Nourelfath, D Ait-Kadi (2010). A multi-stage stochastic programming approach for production planning with uncertainty in the quality of raw materials and demand. Int J Prod Res, 48(16): 4701–4723
https://doi.org/10.1080/00207540903055727
192 J D Zhang, G Rong (2010). Fuzzy possibilistic modeling and sensitivity analysis for optimal fuel gas scheduling in refinery. Eng Appl Artif Intell, 23(3): 371–385
https://doi.org/10.1016/j.engappai.2010.01.023
193 H J Zimmermann (1985). Applications of fuzzy sets theory to mathematical programming. Inf Sci, 36(1–2): 29–58
https://doi.org/10.1016/0020-0255(85)90025-8
[1] Weisheng HOU, Qiaochu YANG, Xiuwen CHEN, Fan XIAO, Yonghua CHEN. Uncertainty analysis and visualization of geological subsurface and its application in metro station construction[J]. Front. Earth Sci., 2021, 15(3): 692-704.
[2] KuoRay MAO, Qian ZHANG, Yongji XUE, Nefratiri WEEKS. Toward a socio-political approach to water management: successes and limitations of IWRM programs in rural north-western China[J]. Front. Earth Sci., 2020, 14(2): 268-285.
[3] Grey S. NEARING, Hoshin V. GUPTA. Ensembles vs. information theory: supporting science under uncertainty[J]. Front. Earth Sci., 2018, 12(4): 653-660.
[4] S.R. FASSNACHT, K.S.J. BROWN, E.J. BLUMBERG, J.I. LÓPEZ MORENO, T.P. COVINO, M. KAPPAS, Y. HUANG, V. LEONE, A.H. KASHIPAZHA. Distribution of snow depth variability[J]. Front. Earth Sci., 2018, 12(4): 683-692.
[5] Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
[6] D.M. HULTSTRAND, S.R. FASSNACHT. The sensitivity of snowpack sublimation estimates to instrument and measurement uncertainty perturbed in a Monte Carlo framework[J]. Front. Earth Sci., 2018, 12(4): 728-738.
[7] C. DAI,W. SUN,Q. TAN,Y. LIU,W.T. LU,H.C. GUO. Risk management for sulfur dioxide abatement under multiple uncertainties[J]. Front. Earth Sci., 2016, 10(1): 87-107.
[8] Cong DONG, Guohe HUANG, Qian TAN, Yanpeng CAI. Coupled planning of water resources and agricultural land-use based on an inexact-stochastic programming model[J]. Front Earth Sci, 2014, 8(1): 70-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed