Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2014, Vol. 8 Issue (4) : 457-471    https://doi.org/10.1007/s11707-014-0457-4
RESEARCH ARTICLE
Regional climate model downscaling may improve the prediction of alien plant species distributions
Shuyan LIU1, Xin-Zhong LIANG1,2(), Wei GAO3, Thomas J. STOHLGREN4
1. Earth System Science Interdisciplinary Center, University of Maryland, College Park MD 20740, USA
2. Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park MD 20740, USA
3. Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins CO 80523, USA
4. Fort Collins Science Center, U.S. Geological Survey, Fort Collins CO 80526, USA
 Download: PDF(4307 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models). We also compared species distributions based on either GCM-based or RCM-based models for the present (1990–1999) to the future (2046–2055).

RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa (Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

Keywords climate change      species distribution model      Maxent      downscaling     
Corresponding Author(s): Xin-Zhong LIANG   
Online First Date: 19 June 2014    Issue Date: 13 January 2015
 Cite this article:   
Shuyan LIU,Xin-Zhong LIANG,Wei GAO, et al. Regional climate model downscaling may improve the prediction of alien plant species distributions[J]. Front. Earth Sci., 2014, 8(4): 457-471.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-014-0457-4
https://academic.hep.com.cn/fesci/EN/Y2014/V8/I4/457
1 O Allouche, A Tsoar, R Kadmon (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol, 43(6): 1223–1232
https://doi.org/10.1111/j.1365-2664.2006.01214.x
2 M B Araújo, R G Pearson, W Thuiller, M Erhard (2005). Validation of species-climate impact models under climate change. Glob Change Biol, 11(9): 1504–1513
https://doi.org/10.1111/j.1365-2486.2005.01000.x
3 L J Beaumont, R V Gallagher, W Thuiller, P O Downey, M R Leishman, L Hughes (2009). Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib, 15(3): 409–420
https://doi.org/10.1111/j.1472-4642.2008.00547.x
4 C Bellard, C Bertelsmeier, P Leadley, W Thuiller, F Courchamp (2012). Impacts of climate change on the future of biodiversity. Ecol Lett, 15(4): 365–377
https://doi.org/10.1111/j.1461-0248.2011.01736.x
5 J E Bromberg, S Kumar, C S Brown, T J Stohlgren (2011). Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park. Invasive Plant Science and Management, 4(2): 173–182
https://doi.org/10.1614/IPSM-D-10-00022.1
6 W D Collins, C M Bitz, M L Blackmon, G B Bonan, C S Bretherton, J A Carton, P Chang, S C Doney, J J Hack, T B Henderson, J T Kiehl, W G Large, D S McKenna, B D Santer, R D Smith (2006). The Community Climate System Model version 3 (CCSM3). J Clim, 19(11): 2122–2143
https://doi.org/10.1175/JCLI3761.1
7 D C Cook, M B Thomas, S A Cunningham, D L Anderson, P J DeBarro (2007). Predicting the economic impact of an invasive species on an ecosystem service. Ecol Appl, 17(6): 1832–1840
https://doi.org/10.1890/06-1632.1
8 A J Davis, L S Jenkinson, J H Lawton, B Shorrocks, S Wood (1998). Making mistakes when predicting shifts in species range in response to global warming. Nature, 391(6669): 783–786
https://doi.org/10.1038/35842
9 J Elith, C H Graham, R P Anderson, M Dudík, S Ferrier, A Guisan, R J Hijmans, F Huettmann, J R Leathwick, A Lehmann, J Li, L G Lohmann, B A Loiselle, G Manion, C Moritz, M Nakamura, Y Nakazawa, J M Overton, A T Peterson, S J Phillips, K Richardson, R Scachetti-Pereira, R E Schapire, J Soberón, S Williams, M S Wisz, N E Zimmermann (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129–151
https://doi.org/10.1111/j.2006.0906-7590.04596.x
10 J Elith, J R Leathwick (2009). Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst, 40(1): 677–697
https://doi.org/10.1146/annurev.ecolsys.110308.120159
11 J Elith, S J Phillips, T Hastie, M Dudík, Y E Chee, C J Yates (2011). A statistical explanation of Maxent for ecologists. Divers Distrib, 17(1): 43–57
https://doi.org/10.1111/j.1472-4642.2010.00725.x
12 A H Fielding, J F Bell (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv, 24(1): 38–49
https://doi.org/10.1017/S0376892997000088
13 J Franklin, F W Davis, M Ikegami, A D Syphard, L E Flint, A L Flint, L Hannah (2013). Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Glob Change Biol, 19(2): 473–483
https://doi.org/10.1111/gcb.12051
14 P C Hernandez, C Graham, L Master, D Albert (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5): 773–785
https://doi.org/10.1111/j.0906-7590.2006.04700.x
15 R J Hijmans, S E Cameron, J L Parra, P G Jones, A Jarvis (2005). Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 25(15): 1965–1978
https://doi.org/10.1002/joc.1276
16 T R Holcombe, T J Stohlgren, C S Jarnevich (2010). From points to forecasts: predicting invasive species habitat suitability in the near term. Diversity, 2(5): 738–767
https://doi.org/10.3390/d2050738
17 IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007: The physical Science Basis. In: S Solomon, D Qin, M Manning, M Marquis, K Averyt, M M B Tignor, H L Jr. Miller, Z Chen, eds. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. New York: Cambridge University Press
18 C S Jarnevich, P Evangelista, T J Stohlgren, J Morisette (2011). Improving national-scale invasion maps: tamarisk in the western United States. West N Am Nat, 71(2): 164–175
https://doi.org/10.3398/064.071.0204
19 C S Jarnevich, T J Stohlgren (2009). Near term climate projections for invasive species distributions. Biol Invasions, 11(6): 1373–1379
https://doi.org/10.1007/s10530-008-9345-8
20 S Kumar, S A Spaulding, T J Stohlgren, K A Hermann, T S Schmidt, L L Bahls (2009). Potential habitat distribution for the freshwater diatom Didymosphenia geminate in the continental US. Front Ecol Environ, 7(8): 415–420
https://doi.org/10.1890/080054
21 X Z Liang, L Li, K E Kunkel, M Ting, J X L Wang (2004). Regional climate model simulation of U.S. precipitation during 1982–2002. Part I: annual cycle. J Clim, 17(18): 3510–3529
https://doi.org/10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2
22 X-Z Liang, J Pan, J Zhu, K E Kunkel, J X L Wang, A Dai (2006). Regional climate model downscaling of the U.S. summer climate and future change. Journal of Geophysical Research-Atmosphere, 111, D10108
https://doi.org/101029/2005JD006685.
23 X Z Liang, M Xu, X Yuan, T Ling, H I Choi, F Zhang, L Chen, S Liu, S Su, F Qiao, Y He, J X L Wang, K E Kunkel, W Gao, E Joseph, V Morris, T W Yu, J Dudhia, J Michalakes (2012). Regional climate-weather research and forecasting model. Bull Am Meteorol Soc, 93(9): 1363–1387
https://doi.org/10.1175/BAMS-D-11-00180.1
24 L Liu, P M Berry, T P Dawson, R G Pearson (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3): 385–393
https://doi.org/10.1111/j.0906-7590.2005.03957.x
25 R N Mack, D Simberloff, W M Lonsdale, H Evans, M Clout, F A Bazzaz (2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl, 10(3): 689–710
https://doi.org/10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2
26 S Manel, H C Williams, S J Ormerod (2001). Evaluating presences-absence models in ecology: the need to account for prevalence. J Appl Ecol, 38(5): 921–931
https://doi.org/10.1046/j.1365-2664.2001.00647.x
27 J M McPherson, W Jetz, D J Rogers (2004). The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol, 41(5): 811–823
https://doi.org/10.1111/j.0021-8901.2004.00943.x
28 J T Morisette, C S Jarnevich, A Ullah, W Cai, J A Pedelty, J Gentle, T J Stohlgren, J L Schnase (2006). A tamarisk habitat suitability map for the continental United States. Front Ecol Environ, 4(1): 11–17
https://doi.org/10.1890/1540-9295(2006)004[0012:ATHSMF]2.0.CO;2
29 H A Nix (1986). A biogeographic analysis of Australian elapid snakes. In: R Longmore, ed. Australian Flora and Fauna Series 8. Canberra: Australian Government Publishing Service
30 C Parmesan, G Yohe (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918): 37–42
https://doi.org/10.1038/nature01286
31 R G Pearson, T P Dawson (2003). Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful? Glob Ecol Biogeogr, 12(5): 361–371
https://doi.org/10.1046/j.1466-822X.2003.00042.x
32 R G Pearson, W Thuiller, M B Araújo, E Martinez-Meyer, L Brotons, C McClean, L Miles, P Segurado, T P Dawson, D C Lees (2006). Model-based uncertainty in species range prediction. J Biogeogr, 33(10): 1704–1711
https://doi.org/10.1111/j.1365-2699.2006.01460.x
33 S J Phillips (2005). A brief tutorial on Maxent (from ).
34 S J Phillips, R P Anderson, R E Schapire (2006). Maximum entropy modeling of species geographic distributions. Ecol Modell, 190(3–4): 231–259
https://doi.org/10.1016/j.ecolmodel.2005.03.026
35 R S Pielke Sr, R L Wilby (2012). Regional climate downscaling: what’s the point? Eos Transactions American Geophysical Union, 93(5): 52–53
https://doi.org/10.1029/2012EO050008
36 D Pimentel, R Zuniga, D Morrison (2005). Update on the environmental and economic costs of associated with alien-invasive species in the United States. Ecol Econ, 52(3): 273–288
https://doi.org/10.1016/j.ecolecon.2004.10.002
37 M Rejmánek, M J Pitcairn (2002). When is eradication of exotic pest plants a realistic goal? In: C R Veitch, M N Clout, eds. Turning the Tide: the Eradication of Invasive Species. Gland and Cambridge: IUCN SSC Invasive Species Specialist Group, 249–253
38 T L Root, J T Price, K R Hall, S H Schneider, C Rosenzweig, J A Pounds (2003). Fingerprints of global warming on wild animals and plants. Nature, 421(6918): 57–60
https://doi.org/10.1038/nature01333
39 P Segurado, M B Araújo (2004). An evaluation of methods for modelling species distributions. J Biogeogr, 31(10): 1555–1568
https://doi.org/10.1111/j.1365-2699.2004.01076.x
40 D R B Stockwell, A T Peterson (2002). Effects of sample size on accuracy of species distribution models. Ecol Modell, 148(1): 1–13
https://doi.org/10.1016/S0304-3800(01)00388-X
41 T J Stohlgren, D T Barnett, C S Jarnevich, C Flather, J Kartesz (2008). The myth of plant species saturation. Ecol Lett, 11(4): 313–322
https://doi.org/10.1111/j.1461-0248.2008.01153.x
42 T J Stohlgren, P Pyšek, J Kartesz, M Nishino, A Pauchard, M Winter, J Pino, D M Richardson, J R U Wilson, B R Murray, M L Phillips, L Celesti-Grapow, J Graham (2013). Globalization effects on common plant species. In: S Levin, ed. Encyclopedia of Biodiversity (Second Edition). Waltham, MA: Academic Press, 3: 700–706
43 T J Stohlgren, J L Schnase (2006). Risk analysis for biological hazards: what we need to know about invasive species. Risk Anal, 26(1): 163–173
https://doi.org/10.1111/j.1539-6924.2006.00707.x
44 J A Swets (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285–1293
https://doi.org/10.1126/science.3287615
45 C Tebaldi, R Smith, D Nychka, L O Mearns (2005). Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multi-model ensembles. J Clim, 18(10): 1524–1540
https://doi.org/10.1175/JCLI3363.1
46 C D Thomas, E J Bodsworth, R J Wilson, A D Simmons, Z G Davies, M Musche, L Conradt (2001). Ecological and evolutionary processes at expanding range margins. Nature, 411(6837): 577–581
https://doi.org/10.1038/35079066
47 C D Thomas, A Cameron, R E Green, M Bakkenes, L J Beaumont, Y Collingham, B F N Erasmus, M F de Siqueira, A Grainger, L Hannah, L Hughes, B Huntley, A S van Jaarsveld, G F Midgley, L J Miles, M A Ortega-Huerta, A T Peterson, O Philips, S E Williams (2004). Extinction risk from climate change. Nature, 427(6970): 145–148
https://doi.org/10.1038/nature02121
48 P E Thornton, S W Running, M A White (1997). Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol (Amst), 190(3–4): 214–251
https://doi.org/10.1016/S0022-1694(96)03128-9
49 W Thuiller (2003). BIOMOD: optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol, 9(10): 1353–1362
https://doi.org/10.1046/j.1365-2486.2003.00666.x
50 W Thuiller (2004). Patterns and uncertainties of species’ ranges shifts under climate change. Glob Change Biol, 10(12): 2020–2027
https://doi.org/10.1111/j.1365-2486.2004.00859.x
51 W Thuiller, D M Richardson, P Pyšek, G F Midgley, G O Hughes, M Rouget (2005). Niche-based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Change Biol, 11(12): 2234–2250
https://doi.org/10.1111/j.1365-2486.2005.001018.x
52 R S Vose, S Applequist, M J Menne, C N Williams Jr, P Thorne (2012). An intercomparison of temperature trends in the U.S. historical climatology network and recent atmospheric reanalyses. Geophys Res Lett, 39(10): L10703
https://doi.org/10.1029/2012GL051387
53 G R Walther, E Post, P Convey, A Menzel, C Parmesan, T J Beebee, J M Fromentin, O Hoegh-Guldberg, F Bairlein (2002). Ecological responses to recent climate change. Nature, 416(6879): 389–395
https://doi.org/10.1038/416389a
54 E O Wiley, K M McNyset, A T Peterson, C R Robins, A M Stewart (2003). Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography (Wash DC), 16(3): 120–127
https://doi.org/10.5670/oceanog.2003.42
55 C J Yates, A McNeill, J Elith, G F Midgley (2010). Assessing the impacts of climate change and land transformation on Banksia in the South West Australian Floristic Region. Divers Distrib, 16(1): 187–201
https://doi.org/10.1111/j.1472-4642.2009.00623.x
[1] Xiaocha WEI, Qiuwen ZHOU, Ya LUO, Mingyong CAI, Xu ZHOU, Weihong YAN, Dawei PENG, Ji ZHANG. Vegetation dynamics and its response to driving factors in typical karst regions, Guizhou Province, China[J]. Front. Earth Sci., 2021, 15(1): 167-183.
[2] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[3] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
[4] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[5] Soheila SAFARYAN, Mohsen TAVAKOLI, Noredin ROSTAMI, Haidar EBRAHIMI. Evaluation of climate change effects on extreme flows in a catchment of western Iran[J]. Front. Earth Sci., 2019, 13(3): 523-534.
[6] Duanyang XU, Alin SONG, Dajing LI, Xue DING, Ziyu WANG. Assessing the relative role of climate change and human activities in desertification of North China from 1981 to 2010[J]. Front. Earth Sci., 2019, 13(1): 43-54.
[7] Chunlan LI, Jun WANG, Richa HU, Shan YIN, Yuhai BAO, Yuwei LI. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Front. Earth Sci., 2018, 12(2): 420-430.
[8] N.B.H. VENABLE. Hydroclimatological data and analyses from a headwaters region of Mongolia as boundary objects in interdisciplinary climate change research[J]. Front. Earth Sci., 2017, 11(3): 457-468.
[9] Xin JIA, Shuangwen YI, Yonggang SUN, Shuangye WU, Harry F. LEE, Lin WANG, Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[10] Le Wang, Shenglian Guo, Xingjun Hong, Dedi Liu, Lihua Xiong. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change[J]. Front. Earth Sci., 2017, 11(1): 95-113.
[11] David BRAND,Chathurika WIJEWARDANA,Wei GAO,K. Raja REDDY. Interactive effects of carbon dioxide, low temperature, and ultraviolet-B radiation on cotton seedling root and shoot morphology and growth[J]. Front. Earth Sci., 2016, 10(4): 607-620.
[12] Guanghui DONG,Honggao LIU,Yishi YANG,Ying YANG,Aifeng ZHOU,Zhongxin WANG,Xiaoyan REN,Fahu CHEN. Emergence of ancient cities in relation to geopolitical circumstances and climate change during late Holocene in northeastern Tibetan Plateau, China[J]. Front. Earth Sci., 2016, 10(4): 669-682.
[13] He ZHANG, Fulu TAO, Dengpan XIAO, Wenjiao SHI, Fengshan LIU, Shuai ZHANG, Yujie LIU, Meng WANG, Huizi BAI. Contributions of climate, varieties, and agronomic management to rice yield change in the past three decades in China[J]. Front. Earth Sci., 2016, 10(2): 315-327.
[14] Jing WU,Lichun TANG,Rayman MOHAMED,Qianting ZHU,Zheng WANG. Modeling and assessing international climate financing[J]. Front. Earth Sci., 2016, 10(2): 253-263.
[15] Zhuoran LIANG, Tingting GU, Zhan TIAN, Honglin ZHONG, Yuqi LIANG. Agro-climatic adaptation of cropping systems under climate change in Shanghai[J]. Front. Earth Sci., 2015, 9(3): 487-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed