|
|
|
Identification of landslide spatial distribution and susceptibility assessment in relation to topography in the Xi’an Region, Shaanxi Province, China |
Jianqi ZHUANG1,2,Jianbing PENG1,2,*( ),Javed IQBAL3,4,Tieming LIU2,Na LIU2,Yazhe LI1,Penghui MA1 |
1. School of Geological Engineering and Surveying of Changan University, Key Laboratory of Western China Mineral Resources and Geological Engineering, Xi’an 710054, China 2. Institute of Geo-hazards Mitigation of Chang’an University, Xi’an 710054, China 3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 4. Department of Earth Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan |
|
|
|
|
Abstract Landslides are among the most serious of geohazards in the Xi’an Region, Shaanxi, China, and are responsible for extensive human and property loss. In order to understand the distribution of landslides and assess their associated hazards in this region, we used a combination of frequency analysis, logistic analysis, and Geographic Information System (GIS) analysis, with consideration of the spatial distribution of landslides. Using the GIS approach, the five key factors of surface topography, including slope gradient, topographic wetness index (TWI), height difference, profile curvature and slope aspect, were considered. First, the distribution and frequency of landslides were considered in relation to all of the five factors in each of three sub-regions susceptible to landslides (Qin Mountain, Li Mountain, and Loess Tableland). Secondly, each factor’s influence was determined by a logistic regression method, and the relative importance of each of these independent variables was evaluated. Finally, a landslide susceptibility map was generated using GIS tools. Locations that had recorded landslides were used to validate the results of the landslide susceptibility map and the accuracy obtained was above 84%. The validation proved that there is sufficient agreement between the susceptibility map and existing records of landslide occurrences. The logistic regression model produced acceptable results (the areas under the Receiver Operating Characteristics (ROC) curve were 0.865, 0.841, and 0.924 in the Qin Mountain, Li Mountain and Loess Tableland). We are confident that the results of this study can be useful in preliminary planning for land use, particularly for construction work in high-risk areas.
|
| Keywords
landslide distribution
susceptibility assessment
logistic model
ROC
Xi’an
|
|
Corresponding Author(s):
Jianbing PENG
|
|
Online First Date: 21 January 2015
Issue Date: 20 July 2015
|
|
| 1 |
Ayalew L, Yamagishi H (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1–2): 15–31
https://doi.org/10.1016/j.geomorph.2004.06.010
|
| 2 |
Baghem M, Chouabi B, Abdel M, Demdoum C, Abdeslem D (2012). Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quaternary International, 302(17): 224–237
https://doi.org/org/10.1016/j.quaint.2012.11.027
|
| 3 |
Bai S, Lu G, Wang J, Zhou P, Ding L (2011). GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environment Earth Science, 62(1): 139–149
https://doi.org/10.1007/s12665-010-0509-3
|
| 4 |
Bai S B, Wang J, Lu G, Zhou P, Hou S S, Xu S N (2010). GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area China. Geomorphology, 115(1–2): 23–31
https://doi.org/10.1016/j.geomorph.2009.09.025
|
| 5 |
Beven K J, Kirkby M J (1979). A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull, 24(1): 43–69
https://doi.org/10.1080/02626667909491834
|
| 6 |
Cui P, Zhou G G D, Zhu X H, Zhang J Q (2012). Scale amplification of natural debris flows caused by cascading landslide dam failures. Geomorphology, 123: 1–17
https://doi.org/10.1016/j.geomorph.2012.11.009
|
| 7 |
Cui P, Zou Q, Xiang L Z, Zeng C (2013). Risk assessment of simultaneous debris flows in mountain townships. Prog Phys Geogr, 37(4): 516–542
https://doi.org/10.1177/0309133313491445
|
| 8 |
Dai F C, Lee C F (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3–4): 213–228
https://doi.org/10.1016/S0169-555X(01)00087-3
|
| 9 |
Dai F C, Lee C F, Ngai Y Y (2002). Landslide risk assessment and management: an overview. Eng Geol, 64(1): 65–87
https://doi.org/10.1016/S0013-7952(01)00093-X
|
| 10 |
Dai F C, Lee C F, Zhang X H (2001). GIS-based geo-environmental evaluation for urban land-use planning: a case study. Eng Geol, 61(4): 257–271
https://doi.org/10.1016/S0013-7952(01)00028-X
|
| 11 |
Ermini L, Catani F, Casagli N (2005). Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology, 66(1–4): 327–343
https://doi.org/10.1016/j.geomorph.2004.09.025
|
| 12 |
Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage W Z (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol, 102(3–4): 85–98
https://doi.org/10.1016/j.enggeo.2008.03.022
|
| 13 |
Fernandes N F, Guimar?es R F, Gomes R A T, Vieira B C, Montgomery D R, Greenberg H (2004). Topographic controls of landslides in Rio de Janeiro: field evidence and modeling. Catena, 55(2): 163–181
https://doi.org/ 10.1016/S0341-8162(03)00115-2
|
| 14 |
García-Rodríguez M J, Malpica J A, Benito B, Díaz M (2008). Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology, 95(3–4): 172–191
https://doi.org/10.1016/j.geomorph.2007.06.001
|
| 15 |
Guzzetti F, Peruccacci S, Rossi M, Stark C P (2008). The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides, 5(1): 3–17
https://doi.org/10.1007/s10346-007-0112-1
|
| 16 |
Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006). Estimating the quality of landslide susceptibility models. Geomorphology, 81(1–2): 166–184
https://doi.org/10.1016/j.geomorph.2006.04.007
|
| 17 |
Iverson R M (1997). The physics of debris flows. Rev Geophys, 35(3): 245–296
https://doi.org/10.1029/97RG00426
|
| 18 |
Kayastha P (2012). Application of fuzzy logic approach for landslide susceptibility mapping in Garuwa sub-basin, East Nepal. Front Earth Sci, 6(4): 420–432
https://doi.org/10.1007/s11707-012-0337-8
|
| 19 |
Keefer D K, Wilson R C, Mark R K, Brabb E E, Brown W. M (1987). Real-time landslide warning during heavy rainfall. Science, 238(13): 921–925
https://doi.org/10.1126/science.238.4829.921
|
| 20 |
Lee S (2007). Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surface Processes and Landforms, 32(14): 2133–2148
https://doi.org/ Doi/10.1002/esp.1517
|
| 21 |
Lee S, Min K (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environment Geology, 40(9): 1095–1113
https://doi.org/10.1007/s002540100310
|
| 22 |
Lee S, Pradhan B (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1): 33–41
https://doi.org/10.1007/s10346-006-0047-y
|
| 23 |
Lei X Y (1991). The stability of loess landslides on the edges of the bailuyuan tableland, Xi’an and their relationship with human activities. Geology Review, 37(3): 258–264 (in Chinese)
|
| 24 |
Li Y S (1992). Xi’an Crack and the Weihe River Basin Active Fault Research. Beijing: Seismological Press (in Chinese)
|
| 25 |
Liao W D (2007). Analysis of Characteristic and cause of formation of landslides at bailuyuan. Journal of Disaster Prevention and Mitigation Engineering, 27(1): 80–85 (in Chinese)
|
| 26 |
Liu X L, Yu C J, Shi P J, Fang W H (2012). Debris flow and landslide hazard mapping and risk analysis in China. Front Earth Sci, 6(3): 306–313
https://doi.org/10.1007/s11707-012-0328-9
|
| 27 |
Mansouri Daneshvar M R, Bagherzadeh A (2011). Landslide hazard zonation assessment using GIS analysis at Golmakan Watershed, northeast of Iran. Front Earth Sci, 5(1): 70–81
https://doi.org/10.1007/s11707-011-0151-8
|
| 28 |
Montgomery D R, Dietrich W E (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30: 1153–1171
https://doi.org/Doi/10.1029/93WR02979.
|
| 29 |
Nandi A, Shakoor A (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol, 110(1–2): 11–20
https://doi.org/10.1016/j.enggeo.2009.10.001
|
| 30 |
Nefeslioglu H A, Sezer E, Gokceoglu C, Bozkir A S, Duman T Y (2010). Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Mathematical Problems in Engineering, 90(105): 89–93
https://doi.org/10.1155/2010/901095.
|
| 31 |
Peng J B, Zhang J, Su S R, Mi F S (1992). Active Faults and Geological Hazards in Wei Basin. Xi’an: Northwest University Press (in Chinese with English Abstract)
|
| 32 |
Piacentini D, Troiani F, Soldati M, Notarnicola C, Savelli D, Schneiderbauer S S C, Strada C (2012). Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology, 151–152: 196–206
https://doi.org/10.1016/j.geomorph.2012.02.003
|
| 33 |
Regmi N R, Giardino J R, Vitek J D (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1–2): 172–187
https://doi.org/10.1016/j.geomorph.2009.10.002
|
| 34 |
Swets J A (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857): 1285–1293
https://doi.org/10.1126/science.3287615
pmid: 3287615
|
| 35 |
Tang C, van Asch T W J, Chang M, Chen G Q, Zhao X H, Huang X C (2012). Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: the combined effects of a strong earthquake and subsequent rainstorms. Geomorphology, 139 ? 140: 559–576
https://doi.org/10.1016/j.geomorph.2011.12.021
|
| 36 |
Wieczorek G F, Mandrone G, DeCola L (1997). The influence of hillslope shape on debris-flow initiation. In: Chen C L, ed. Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. California: American Society of Civil Engineers, 21–31
|
| 37 |
Wilson J P, Gallant J C (2000). Terrain Analysis. Principles and Applications. New York: Wiley, 113–127
|
| 38 |
Xu C, Xu X W, Dai F C, Saraf A K (2012). Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Comput Geosci, 46: 317–329
https://doi.org/10.1016/j.cageo.2012.01.002
|
| 39 |
Xu C, Xu X W, Dai F C, Wu Z D, He H L, Shi F, Wu X Y, Xu S N (2013). Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Nat Hazards, 68(2): 883–900
https://doi.org/10.1007/s11069-013-0661-7
|
| 40 |
Xu Q, Fan X M, Huang R Q, Yin Y P, Hou S S, Dong X J, Tang M G (2010). A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009: background, characterization, and causes. Landslides, 7(1): 75–87
https://doi.org/10.1007/s10346-009-0179-y
|
| 41 |
Yilmaz I (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci, 35(6): 1125–1138
https://doi.org/10.1016/j.cageo.2008.08.007
|
| 42 |
Yune C Y, Chae Y K, Paik J, Kim G, Lee S W, Seo H S (2013). Debris flow in metropolitan area-2011 Seoul debris flow. Journal of Mountain Science, 10(2): 199–206
https://doi.org/10.1007/s11629-013-2518-7
|
| 43 |
Zhao F S (1993) Features and occurring conditions of the bailuyuan slope failures, Xi’an. Journal of Xi’an College of Geology, 15(4): 167–171 (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|